函數(shù)f(x)=1-ex的圖象與y軸相交于點(diǎn)P,則曲線在點(diǎn)P處的切線的方程為
 
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求出函數(shù)f(x)與y軸的交點(diǎn)坐標(biāo),再求出原函數(shù)的導(dǎo)函數(shù),得到函數(shù)在x=0處的導(dǎo)數(shù),由直線方程的點(diǎn)斜式得答案.
解答: 解:由f(x)=1-ex,得f(0)=1-e0=0.
又f′(x)=-ex
∴f′(0)=-e0=-1.
∴f(x)=1-ex在點(diǎn)P(0,0)處的切線方程為y-0=-1×(x-0),
即x+y=0.
故答案為:x+y=0.
點(diǎn)評:本題考查利用導(dǎo)數(shù)研究曲線上某點(diǎn)的切線方程,過曲線上某點(diǎn)處的切線的斜率,就是函數(shù)在該點(diǎn)處的導(dǎo)數(shù)值,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

為了更好地普及消防知識,增強(qiáng)安全意識,某校舉行了一次消防知識競賽,其中一道題是連線題,要求將4種不同消防工具與它們的4種不同的用途一對一連線,規(guī)定:每連對一條得5分,連錯一條的得負(fù)2分,某參賽者隨機(jī)用4條線把消防工具一對一全部連接起來
(Ⅰ)求該參賽者恰好能連對一條的概率;
(Ⅱ)若做這道連線題得正分者獲獎,求該參賽者獲獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓(x-1)2+(y-1)2=4上到直線3x-4y+6=0的距離為2的點(diǎn)共有
 
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,過點(diǎn)P(1,2)的直線與x軸和y軸的正半軸圍成的三角形的面積的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線y=kx(k>0)是y=lnx2的切線,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,若3a=5b,且sinA是sinB與sinC的等差中項(xiàng),則角C=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在公園游園活動中有這樣一個游戲項(xiàng)目:甲箱子里裝有3個白球和2個黑球,乙箱子里裝有1個白球和2個黑球,這些球除顏色外完全相同;每次游戲都從這兩個箱子里各隨機(jī)地摸出2個球,若摸出的白球不少于2個,則獲獎(每次游戲結(jié)束后將球放回原箱).在兩次游戲中,記獲獎次數(shù)為X,則X的數(shù)學(xué)期望為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知首項(xiàng)a1=1,公差d=-2的等差數(shù)列{an},當(dāng)an=-27時,n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)z=x+y,其中x,y滿足
x+2y≥0
x-y≤0
0≤y≤k
,若z的最大值為12,則z的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案