已知0<a<b,若函數(shù)f(x)=2x+
1
x
在[a,b]上單調(diào)遞增,則對于任意x1,x2∈[a,b],且x1≠x2,使f(a)≤
g(x1)-g(x2)
x1-x2
≤f(b)
恒成立的函數(shù)g(x)可以是( 。
分析:由于g′(x)=
lim
x1x2
g(x1)-g(x2)
x1-x2
,故“f(a)≤
g(x1)-g(x2)
x1-x2
≤f(b)
恒成立”?“恒有f(a)≤g′(x)≤f(b)”.再依據(jù)函數(shù)f(x)單調(diào)性,即可得到正確結(jié)論.
解答:解:由于對于任意x1,x2∈[a,b],且x1≠x2,使f(a)≤
g(x1)-g(x2)
x1-x2
≤f(b)
恒成立
則對于任意x∈[a,b],恒有f(a)≤g′(x)≤f(b)
由于0<a<b,函數(shù)f(x)=2x+
1
x
在[a,b]上單調(diào)遞增,
則只需使g′(x)=f(x)即可,
故答案為 B
點評:本題考查導數(shù)的概念,解題關(guān)鍵是在[a,b]上,將“f(a)≤
g(x1)-g(x2)
x1-x2
≤f(b)
恒成立”轉(zhuǎn)化為“恒有f(a)≤g′(x)≤f(b)”.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為(0,+∞),若y=
f(x)
x
在(0,+∞)上為增函數(shù),則稱f(x)為“一階比增函數(shù)”;若y=
f(x)
x2
在(0,+∞)上為增函數(shù),則稱f(x)為“二階比增函數(shù)”.我們把所有“一階比增函數(shù)”組成的集合記為Ω1,所有“二階比增函數(shù)”組成的集合記為Ω2
(Ⅰ)已知函數(shù)f(x)=x3-2hx2-hx,若f(x)∈Ω1,且f(x)∉Ω2,求實數(shù)h的取值范圍;
(Ⅱ)已知0<a<b<c,f(x)∈Ω1且f(x)的部分函數(shù)值由下表給出,
x a b c a+b+c
f(x) d d t 4
求證:d(2d+t-4)>0;
(Ⅲ)定義集合Φ={f(x)|f(x)∈Ω2,且存在常數(shù)k,使得任取x∈(0,+∞),f(x)<k},請問:是否存在常數(shù)M,使得?f(x)∈Φ,?x∈(0,+∞),有f(x)<M成立?若存在,求出M的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x-2
ax+1
(a>1,x∈R,x≠-
1
a
)
;
(1)試問:該函數(shù)的圖象上是否存在不同的兩點,它們的函數(shù)值相同,請說明理由;
(2)若函數(shù)F(x)=ax+f(x),試問:方程F(x)=0有沒有負根,請說明理由.
(3)記G(x)=|ax-b|-b•ax,(x∈R),若G(x)有最小值,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的奇函數(shù)f(x).當x<0時,f(x)=x2+2x.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)問:是否存在實數(shù)a,b(a≠b),使f(x)在x∈[a,b]時,函數(shù)值的集合為[
1
b
1
a
]
?若存在,求出a,b;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)的定義域為(0,+∞),若y=
f(x)
x
在(0,+∞)上為增函數(shù),則稱f(x)為“一階比增函數(shù)”;若y=
f(x)
x2
在(0,+∞)上為增函數(shù),則稱f(x)為“二階比增函數(shù)”.我們把所有“一階比增函數(shù)”組成的集合記為Ω1,所有“二階比增函數(shù)”組成的集合記為Ω2
(Ⅰ)已知函數(shù)f(x)=x3-2hx2-hx,若f(x)∈Ω1,且f(x)∉Ω2,求實數(shù)h的取值范圍;
(Ⅱ)已知0<a<b<c,f(x)∈Ω1且f(x)的部分函數(shù)值由下表給出,
x a b c a+b+c
f(x) d d t 4
求證:d(2d+t-4)>0;
(Ⅲ)定義集合Φ={f(x)|f(x)∈Ω2,且存在常數(shù)k,使得任取x∈(0,+∞),f(x)<k},請問:是否存在常數(shù)M,使得?f(x)∈Φ,?x∈(0,+∞),有f(x)<M成立?若存在,求出M的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省揚州中學高三(下)開學檢測數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)f(x)的定義域為(0,+∞),若y=在(0,+∞)上為增函數(shù),則稱f(x)為“一階比增函數(shù)”;若y=在(0,+∞)上為增函數(shù),則稱f(x)為“二階比增函數(shù)”.我們把所有“一階比增函數(shù)”組成的集合記為Ω1,所有“二階比增函數(shù)”組成的集合記為Ω2
(Ⅰ)已知函數(shù)f(x)=x3-2hx2-hx,若f(x)∈Ω1,且f(x)∉Ω2,求實數(shù)h的取值范圍;
(Ⅱ)已知0<a<b<c,f(x)∈Ω1且f(x)的部分函數(shù)值由下表給出,
xabca+b+c
f(x)ddt4
求證:d(2d+t-4)>0;
(Ⅲ)定義集合Φ={f(x)|f(x)∈Ω2,且存在常數(shù)k,使得任取x∈(0,+∞),f(x)<k},請問:是否存在常數(shù)M,使得?f(x)∈Φ,?x∈(0,+∞),有f(x)<M成立?若存在,求出M的最小值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案