已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)上是減函數(shù),求實數(shù)a的最小值;
(Ⅲ)若,使()成立,求實數(shù)a的取值范圍.
(Ⅰ)單調(diào)減區(qū)間是,增區(qū)間是.;(Ⅱ);(Ⅲ).
解析試題分析:(1)先求,解不等式并和定義域求交集,得的單調(diào)遞增區(qū)間;解不等式并和定義域求交集,得的單調(diào)遞減區(qū)間;(2)等價于在時恒成立,即,故,得實數(shù)a的取值范圍;(3)由特稱量詞的含義知,在區(qū)間內(nèi)存在兩個獨立變量,使得已知不等式成立,等價于的最小值小于等于的最大值,分別求兩個函數(shù)的最小值和最大值,建立實數(shù)的不等式,進而求的范圍.
試題解析:由已知函數(shù)的定義域均為,且.
(Ⅰ)函數(shù),當且時,;當時,.
所以函數(shù)的單調(diào)減區(qū)間是,增區(qū)間是.
(Ⅱ)因f(x)在上為減函數(shù),故在上恒成立.
所以當時,.又,故當,即時,.所以于是,故a的最小值為.
(Ⅲ)命題“若使成立”等價于“當時,
有”.
由(Ⅱ),當時,,. 問題等價于:“當時,有”.
當時,由(Ⅱ),在上為減函數(shù),則=,故.
當0<時,由于在上為增函數(shù),故的值域為,即.由的單調(diào)性和值域知,唯一,使,且滿足:當時,,為減函數(shù);當時,,
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)(為自然對數(shù)的底數(shù)).
(1)求函數(shù)在上的單調(diào)區(qū)間;
(2)設函數(shù),是否存在區(qū)間,使得當時函數(shù)的值域為,若存在求出,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)(其中,e是自然對數(shù)的底數(shù)).
(Ⅰ)若,試判斷函數(shù)在區(qū)間上的單調(diào)性;
(Ⅱ)若函數(shù)有兩個極值點,(),求k的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,試證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù).
(1)當時,求曲線在處的切線方程;
(2)當時,求函數(shù)的單調(diào)區(qū)間;
(3)在(2)的條件下,設函數(shù),若對于 [1,2], [0,1],使成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(I) 當,求的最小值;
(II) 若函數(shù)在區(qū)間上為增函數(shù),求實數(shù)的取值范圍;
(III)過點恰好能作函數(shù)圖象的兩條切線,并且兩切線的傾斜角互補,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),.
(Ⅰ)若曲線在與處的切線相互平行,求的值及切線斜率;
(Ⅱ)若函數(shù)在區(qū)間上單調(diào)遞減,求的取值范圍;
(Ⅲ)設函數(shù)的圖像C1與函數(shù)的圖像C2交于P、Q兩點,過線段PQ的中點作x軸的垂線分別交C1、C2于點M、N,證明:C1在點M處的切線與C2在點N處的切線不可能平行.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某商場預計2014年從1月起前個月顧客對某種商品的需求總量(單位:件)
(1)寫出第個月的需求量的表達式;
(2)若第個月的銷售量(單位:件),每件利潤(單位:元),求該商場銷售該商品,預計第幾個月的月利潤達到最大值?月利潤的最大值是多少?(參考數(shù)據(jù):)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com