在△ABC中,a,b,c分別是角A,B,C的對(duì)邊.已知b=4,c=2,∠A=60°,則a=
 
;∠C=
 
考點(diǎn):余弦定理,正弦定理
專題:三角函數(shù)的求值
分析:由b,c,cosA的值,利用余弦定理求出a的值,再由a,sinA,c的值,利用正弦定理求出sinC的值,進(jìn)而確定出C的度數(shù).
解答: 解:∵b=4,c=2,∠A=60°,
∴a2=b2+c2-2abcosA=16+4-8=12,
∴a=2
3
,
∵sinA=
3
2
,c=2,
∴由正弦定理
a
sinA
=
c
sinC
得:sinC=
csinA
a
=
3
2
2
3
=
1
2
,
∵c<a,
∴C<A,
∴∠C=30°.
故答案為:2
3
;30°
點(diǎn)評(píng):此題考查了正弦、余弦定理,以及特殊角的三角函數(shù)值,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有一個(gè)幾何體的三視圖如圖所示,這個(gè)幾何體是一個(gè)( 。
A、棱臺(tái)B、棱錐C、棱柱D、圓柱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),如果一個(gè)橢圓經(jīng)過點(diǎn)P(3,
2
),且以點(diǎn)F(2,0)為它的一個(gè)焦點(diǎn).
(1)求此橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)中求過點(diǎn)F(2,0)的弦AB的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,橢圓的四個(gè)頂點(diǎn)所圍成菱形的面積為8
2

(1)求橢圓的方程;
(2)四邊形ABCD的頂點(diǎn)在橢圓C上,且對(duì)角線AC,BD均過坐標(biāo)原點(diǎn)O,若kAC•kBD=-
1
2

①求
OA
OB
的范圍;
②求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從編號(hào)為0,1,2,…,79的80件產(chǎn)品中,采用系統(tǒng)抽樣的方法抽取容量是5的樣本,若編號(hào)為28的產(chǎn)品在樣本中,則該樣本中產(chǎn)品的最大編號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于不等式組
2x-3y+2≥0
3x-y-4≤0
x+2y+1≥0
的解(x,y),當(dāng)且僅當(dāng)
x=2
y=2
時(shí),z=x+ay取得最大值,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y,z是實(shí)數(shù),9x,12y,15z成等比數(shù)列,且
1
x
,
1
y
,
1
z
成等差數(shù)列,則
x
z
+
z
x
的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x
,x>0
4x,x≤0
,若函數(shù)y=f(x)-k存在兩個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C上的動(dòng)點(diǎn)P到點(diǎn)(1,0)的距離與到定直線L:x=-1的距離相等,
(1)求曲線C的方程;
(2)直線m過(-2,1),斜率為k,k為何值時(shí),直線m與曲線C只有一個(gè)公共點(diǎn),有兩個(gè)公共點(diǎn);沒有公共點(diǎn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案