已知數(shù)列{log2(an-1)}(n∈N*)為等差數(shù)列,且a1=3,a3=5,則(++…+)等于(    )

A.2                 B.               C.1                D.

解析:令bn=log2(an-1),則{bn}成等差數(shù)列,b1=log22=1,b2=log24=2,則bn=n=log2(an-1),

∴an=2n+1,

an+1-an=2n+1+1-(2n+1)=2n.

∴原式=(++…+)=1.

答案:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{log2(an-1)}(n∈N*)為等差數(shù)列,且a1=3,a3=9.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)證明
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{log2(an-1)}(n∈N*)為等差數(shù)列,且a1=3,a2=5,則
lim
n→∞
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
)=(  )
A、2
B、
3
2
C、1
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{log2(an-1)}(n∈N*)為等差數(shù)列,且a1=3,a3=9
(1)求數(shù)列{an}的通項公式;
(2)求使
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
2012
2013
成立的最小正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{log2(an-1)}(n∈N+)為等差數(shù)列,且a1=3,a2=5,則
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•撫州模擬)已知數(shù)列{log2(an-1)}(n∈N*)為等差數(shù)列,且a1=3,a2=5,則
lim
n→∞
(
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
)
=
1
1

查看答案和解析>>

同步練習(xí)冊答案