(本題12分)
已知二次函數(shù) (,c為常數(shù)且1《c《4)的導(dǎo)函數(shù)的圖象如圖所示:

(1).求的值;
(2)記,求上的最大值。

(1)
(2),令。
,,
當(dāng),即時(shí),;當(dāng),
時(shí),

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù):
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)的圖像在點(diǎn)處的切線(xiàn)的傾斜角為,問(wèn):在什么范圍取值時(shí),函數(shù)在區(qū)間上總存在極值?
(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)
已知
(Ⅰ)若上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)常數(shù)時(shí),設(shè),求上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分15分)已知函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)在點(diǎn)處的切線(xiàn)方程為
(I)求的表達(dá)式;
(Ⅱ)滿(mǎn)足恒成立,則稱(chēng)的一個(gè)“上界函數(shù)”,如果函數(shù)R)的一個(gè)“上界函數(shù)”,求t的取值范圍;
(Ⅲ)當(dāng)時(shí),討論在區(qū)間(0,2)上極值點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).若過(guò)點(diǎn)可作曲線(xiàn)的切線(xiàn)有三條,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分16分)已知定義在上的函數(shù),其中為常數(shù).
(1)若是函數(shù)的一個(gè)極值點(diǎn),求的值;
(2)若函數(shù)在區(qū)上是增函數(shù),求的取值范圍;
(3)若函數(shù),在處取得最大值,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分14分)已知函數(shù)).
(Ⅰ)當(dāng)時(shí),求證:函數(shù)上單調(diào)遞增;
(Ⅱ)若函數(shù)有三個(gè)零點(diǎn),求t的值;
(Ⅲ)若存在x1,x2∈[﹣1,1],使得,試求a的取值范圍.
注:e為自然對(duì)數(shù)的底數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(l2分)已知函數(shù)為自然對(duì)數(shù)的底數(shù)
(I) 當(dāng)時(shí),求函數(shù)的極值;
(Ⅱ) 若函數(shù)在[-1,1]上單調(diào)遞減,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案