【題目】要得到函數(shù)y=sin2x的圖象,只要將y=sin(2x+ )函數(shù)的圖象( )
A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位
科目:高中數(shù)學 來源: 題型:
【題目】某研究所計劃利用“神十”宇宙飛船進行新產(chǎn)品搭載實驗,計劃搭載若干件新產(chǎn)品A、B,該所要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實驗費用和預計產(chǎn)生的收益來決定具體搭載安排,有關數(shù)據(jù)如下表:
每件產(chǎn)品A | 每件產(chǎn)品B | ||
研制成本、搭載 | 20 | 30 | 計劃最大資金額 |
產(chǎn)品重量(千克) | 10 | 5 | 最大搭載重量110千克 |
預計收益(萬元) | 80 | 60 |
分別用x,y表示搭載新產(chǎn)品A,B的件數(shù).總收益用Z表示
(1)用x,y列出滿足生產(chǎn)條件的數(shù)學關系式,并畫出相應的平面區(qū)域;
(2)問分別搭載新產(chǎn)品A、B各多少件,才能使總預計收益達到最大?并求出此最大收益.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0)的一系列對應值如下表:
x | |||||||
y | ﹣1 | 1 | 3 | 1 | ﹣1 | 1 | 3 |
(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)f(x)的一個解析式.
(2)根據(jù)(1)的結果,若函數(shù)y=f(kx)(k>0)周期為 ,當 時,方程f(kx)=m恰有兩個不同的解,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=cos2x﹣sinxcosx
(1)求f(x)的最小正周期;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)求f(x)在區(qū)間 上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】f(x)=x2﹣2x,g(x)=ax+2(a>0),若對任意的x1∈[﹣1,2],存在x0∈[﹣1,2],使g(x1)=f(x0),則a的取值范圍是( )
A.
B.
C.[3,+∞)
D.(0,3]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】己知函數(shù)f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),a>0,且a≠1.
(1)若1是關于x的方程f(x)﹣g(x)=0的一個解,求t的值;
(2)當0<a<1且t=﹣1時,解不等式f(x)≤g(x);
(3)若函數(shù)F(x)=af(x)+tx2﹣2t+1在區(qū)間(﹣1,2]上有零點,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|,g(x)=ax,(a∈R).
(1)若函數(shù)y=f(x)是偶函數(shù),求出符合條件的實數(shù)a的值;
(2)若方程f(x)=g(x)有兩解,求出實數(shù)a的取值范圍;
(3)若a>0,記F(x)=g(x)f(x),試求函數(shù)y=F(x)在區(qū)間[1,2]上的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com