分析 由圖象求出函數(shù)的周期、最大值A(chǔ),由周期公式求出ω的值,由函數(shù)過(guò)的特殊點(diǎn)列出方程,結(jié)合條件求出ϕ,可求出函數(shù)的解析式.
解答 解:由圖可得:A=2,
且$\frac{3}{4}T=\frac{5π}{12}-(-\frac{π}{3})$,解得T=π,
又ω>0,則$\frac{2π}{ω}=π$,解得ω=2,
則函數(shù)f(x)=2sin(2x+ϕ),
因?yàn)楹瘮?shù)圖象過(guò)點(diǎn)($-\frac{π}{3}$,0),
所以2sin($-\frac{2π}{3}$+ϕ)=0,即$-\frac{2π}{3}$+ϕ=kπ(k∈Z),
解得ϕ=$\frac{2π}{3}$+kπ(k∈Z),
又$-\frac{π}{2}<ϕ<\frac{π}{2}$,則$ϕ=-\frac{π}{3}$,
所以f(x)=2sin(2x$-\frac{π}{3}$),
故答案為:f(x)=2sin(2x$-\frac{π}{3}$).
點(diǎn)評(píng) 本題考查由圖象求出正弦型函數(shù)解析式,三角函數(shù)的周期公式,解題的關(guān)鍵是要根據(jù)圖象分析出函數(shù)的最值、周期等,進(jìn)而求出A,ω和φ值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1.2 | B. | 1.3 | C. | 1.4 | D. | 1.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{2}$ | B. | -$\frac{1}{2}$ | C. | 0 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{3}{2}$ | C. | $\frac{3\sqrt{3}}{4}$ | D. | $\frac{3\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {1,2} | B. | {0,1,2} | C. | {1} | D. | {1,2,3} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com