已知函數(shù)f(x)為定義在R上的偶函數(shù),且在(-∞,0]上為減函數(shù),

(1)證明函數(shù)f(x)在[0,+∞)上為增函數(shù);

(2)若f(a-1)>f(1),試求實(shí)數(shù)a的取值范圍.

    (1)證明:設(shè)任意x1、x2∈[0,+∞)且x1<x2,則0>-x1>-x2,

    ∵f(x)在(-∞,0]上為減函數(shù),

    ∴f(-x1)<f(-x2),

    ∵f(x)為偶函數(shù),∴f(x1)<f(x2),

    ∴f(x)在[0,+∞)上為增函數(shù).

    (2)解析:當(dāng)a>1時(shí),∴a>2.

    當(dāng)a-1<0,即a<1時(shí),解得a<0.

    綜上所述:a<2或a<0.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+
a-3
2
x2+(a2-3a)x-2a

(I)如果對任意x∈[1,2],f′(x)>a2恒成立,求實(shí)數(shù)a的取值范圍;
(II)設(shè)函數(shù)f(x)的兩個(gè)極值點(diǎn)分別為x1,x2判斷下列三個(gè)代數(shù)式:①x1+x2+a,②
x
2
1
+
x
2
2
+a2
,③
x
3
1
+
x
3
2
+a3

中有幾個(gè)為定值?并且是定值請求出;若不是定值,請把不是定值的表示為函數(shù)g(a),并求出g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+log2
x
3-x
(x∈(0,3))

(1)求證:f(x)+f(3-x)為定值.
(2)記S(n)=
1
2n
2n-1
i=1
f(1+
i
2n
)(n∈N*)
,求S(n).
(3)若函數(shù)f(x)的圖象與直線x=1,x=2以及x軸所圍成的封閉圖形的面積為S,試探究S(n)與S的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a•2x
2x+
2
的圖象過點(diǎn)(0,
2
-1)

(1)求f(x)的解析式;
(2)設(shè)P1(x1,y1),P2(x2,y2)為y=f(x)的圖象上兩個(gè)不同點(diǎn),又點(diǎn)P(xP,yP)滿足:
OP
=
1
2
(
OP1
+
OP2
)
,其中O為坐標(biāo)原點(diǎn).試問:當(dāng)xP=
1
2
時(shí),yP是否為定值?若是,求出yP的值,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+1-a
a-x
(x≠a)

(1)當(dāng)f(x)的定義域?yàn)?span id="tz7cf7n" class="MathJye">[a+
1
2
,a+1]時(shí),求f(x)的值域;
(2)試問對定義域內(nèi)的任意x,f(2a-x)+f(x)的值是否為一個(gè)定值?若是,求出這個(gè)定值;若不是,說明理由;
(3)設(shè)函數(shù)g(x)=x2+|(x-a)f(x)|,若
1
2
≤a≤
3
2
,求g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1y1),N(x2,y2)
是f(x)圖象上的兩點(diǎn),橫坐標(biāo)為
1
2
的點(diǎn)P滿足2
OP
=
OM
+
ON
(O為坐標(biāo)原點(diǎn)).
(1)求證:y1+y2為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,n≥2令an=
1
6
,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<m(Sn+1+1)對一切n∈N*都成立,試求m的取值范圍.
(3)對于給定的實(shí)數(shù)a(a>1)是否存在這樣的數(shù)列{an},使得f(an)=log3(
3
an+1)
,且a1=
1
a-1
?若存在,求出a滿足的條件;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案