y=2x+1在[1,2]內(nèi)的平均變化率為( 。
A、3B、2C、1D、0
考點(diǎn):變化的快慢與變化率
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:求出在區(qū)間[1,2]上的增量△y=f(2)-f(1),然后利用平均變化率的公式,求平均變化率.
解答: 解:函數(shù)f(x)在區(qū)間[1,2]上的增量△y=f(2)-f(1)=2×2+1-3=2,
∴f(x)在區(qū)間[1,2]上的平均變化率為
△y
△x
=
f(2)-f(1)
2-1
=2.
故選:B.
點(diǎn)評(píng):本題主要考查函數(shù)平均變化率的計(jì)算,根據(jù)定義分別求出△y與△x即可,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中,滿足“p∨q”為真,“p∧q”為假,“¬p”為真是(  )
A、p:0=∅,q:0∈∅
B、p:在△ABC中,若cos2A=cos2B,則A=B;q:y=cosx在第一象限是減函數(shù)
C、p:a+b≥2
ab
(a,b∈R),q:不等式x-1<0的解集是(-∞,1)
D、p:函數(shù)y=
x-1
的定義域是[1,+∞),函數(shù)y=(
1
2
|x|的值域是(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義域?yàn)镽的奇函數(shù)f(x)單調(diào)遞增,且對(duì)任意實(shí)數(shù)a,b滿足f(a)+f(b-1)=0,則a+b=( 。
A、-1B、0C、1D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x2,i是虛數(shù)單位,則在復(fù)平面中復(fù)數(shù)
f(1+i)
3+i
對(duì)應(yīng)的點(diǎn)在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=asin3x+bx3+4(a∈R,b∈R),f′(x)為f(x)的導(dǎo)函數(shù),則f(2014)+f(-2014)+f′(2015)-f′(-2015)=( 。
A、8B、2014
C、2015D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某電視臺(tái)在一次對(duì)收看文藝節(jié)目和新聞節(jié)目觀眾的抽樣調(diào)查中,隨機(jī)抽取了100名電視觀眾,相關(guān)的數(shù)據(jù)如下表所示:
觀眾年齡文藝節(jié)目新聞節(jié)目總計(jì)
20至40歲a10
大于40歲20d50
總計(jì)60100
(1)寫(xiě)出a與d 的值; 并由表中數(shù)據(jù)檢驗(yàn),有沒(méi)有99.9%把握認(rèn)為收看文藝節(jié)目的觀眾與年齡有關(guān)?
(2)從20至40歲,大于40歲中各抽取1名觀眾,求兩人恰好都收看文藝節(jié)目的概率.
P(k2>k)0.0100.0050.001
  k6.6357.87910.83
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C1
x2
a2
-
y2
b2
=1滿足:實(shí)軸長(zhǎng)為
2
,離心率為
3

(1)求曲線C1的方程;
(2)設(shè)斜率為1的直線l交C1于P、Q兩點(diǎn),若l與圓x2+y2=1相切,求證:OP⊥OQ;
(3)設(shè)橢圓C2:4x2+y2=1.若M、N分別是C1、C2上的動(dòng)點(diǎn),且OM⊥ON,求證:O到直線MN的距離是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在四棱錐E-ABCD中,底面ABCD是矩形,AB:BC=1:
2
,O、F分別為CD、BC的中點(diǎn),且EO⊥平面ABCD,求證:AF⊥EF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x-1-alnx,
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)若a<0,對(duì)任意x1,x2∈(0,1],且x1≠x2,都有|f(x1)-f(x2)|<4|
1
x1
-
1
x2
|,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案