已知
x
1+yi
=1-i,其中x,y∈R,i為虛數(shù)單位,則x+yi=(  )
A、1+2iB、1-2i
C、2+iD、2-i
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用兩個(gè)復(fù)數(shù)代數(shù)形式的乘除法、虛數(shù)單位i的冪運(yùn)算性質(zhì)、兩個(gè)復(fù)數(shù)相等的充要條件,求出x、y的值,可得結(jié)論.
解答: 解:∵已知
x
1+yi
=
x(1-yi)
(1+yi)(1-yi)
=
x-xyi
1+y2
=1-i,∴
x
1+y2
=1,
xy
1+y2
=-1,
解得 x=2、y=-1,故x+yi=2-i,
故選:D.
點(diǎn)評(píng):本題主要考查兩個(gè)復(fù)數(shù)代數(shù)形式的乘除法,虛數(shù)單位i的冪運(yùn)算性質(zhì),兩個(gè)復(fù)數(shù)相等的充要條件,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:函數(shù)f(x)=|sin2x-
1
2
|的最小正周期為π;命題q:若函數(shù)f(x+1)為偶函數(shù),則f(x)關(guān)于x=1對(duì)稱.則下列命題是真命題的是( 。
A、p∧q
B、p∨q
C、(¬p)∧(¬q)
D、p∨(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0<a<1,Sn是公差為正數(shù)的等差數(shù)列{an}的前n項(xiàng)和,則有( 。
A、a 2Sn+1=a Sn•a Sn+2
B、a 2Sn+1>a Sn•a Sn+2
C、a 2Sn+1<a Sn•a Sn+2
D、a 2Sn+1與a Sn•a Sn+2的大小關(guān)系無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,zi},B={2},i為虛數(shù)單位,若A∩B=B,則純虛數(shù)z為( 。
A、-iB、-2iC、iD、2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程3x+1-x=6的解所在的區(qū)間是( 。
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)sinθ=
m2+1
4m
(m>0),則cos(θ+
π
6
)的取值范圍是(  )
A、[-1,
1
2
]
B、[-1,
3
2
]
C、[-
1
2
,
1
2
]
D、[-
1
2
,
3
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知PA⊥菱形ABCD所在平面,點(diǎn)E、F分別為線段BC、PA的中點(diǎn).    
(1)求證:BD⊥PC;
(2)求證:BF∥平面PDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公比為q(q≠1)的無窮等比數(shù)列{an}的首項(xiàng)a1=1.
(1)若q=
1
3
,在a1與a2之間插入k個(gè)數(shù)b1,b2,…,bk,使得a1,b1,b2,…,bk,a2,a3成等差數(shù)列,求這k個(gè)數(shù);
(2)對(duì)于任意給定的正整數(shù)m,在a1,a2,a3的a1與a2和a2與a3之間共插入m個(gè)數(shù),構(gòu)成一個(gè)等差數(shù)列,求公比q的所有可能取值的集合(用m表示);
(3)當(dāng)且僅當(dāng)q取何值時(shí),在數(shù)列{an}的每相鄰兩項(xiàng)ak,ak+1之間插入ck(k∈N*,ck∈N)個(gè)數(shù),使之成為一個(gè)等差數(shù)列?并求c1的所有可能值的集合及{cn}的通項(xiàng)公式(用q表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在公差不為0的等差數(shù)列{an}中,a3+a10=15,且a2,a5,a11成等比數(shù)列.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=
1
an
+
1
an+1
+…+
1
a2n-1
,試比較bn+1與bn的大小,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案