已知動點P與雙曲線
x2
2
-
y2
3
=1
的兩個焦點F1、F2的距離之和為6.
(1)求動點P的軌跡C的方程;
(2)
PF1
PF2
=3
,求△PF1F2的面積;
(3)若已知D(0,3),M、N在曲線C上,且
DM
DN
,求實數(shù)λ的取值范圍.
分析:(1)先求出焦點坐標,根據(jù)動點P到兩個焦點F1,F(xiàn)2的距離之和為定值6且6>2
5
,可得動點P的運動軌跡是以F1、F2為焦點的橢圓;再求出對應的a,b,c即可找到動點P的軌跡C的方程;
(2)先設出點P的坐標,代入
PF1
PF2
=3
,得到關于點P的坐標的一個方程;再結合點P的軌跡C的方程可求出點P的縱坐標的絕對值;最后代入三角形的面積計算公式即可;
(3)設出直線MN的方程以及點M,N的坐標,聯(lián)立直線方程與曲線C的對應方程,根據(jù)兩者有公共點,可以求出k的取值范圍以及點M,N的坐標與k的關系;再結合
DM
DN
,求出點M,N的坐標與λ的之間的關系;最后通過消去M,N的坐標來求實數(shù)λ的取值范圍.
解答:解:(1)由雙曲線
x2
2
-
y2
3
=1
的兩個焦點:F1、F2
可知F1(-√5,0),F(xiàn)2(√5,0)
∵動點P到兩個焦點F1,F(xiàn)2的距離之和為定值6且6>2
5

∴動點P的運動軌跡是以F1、F2為焦點的橢圓
∴c=
5
,a=3,b2=a2-c2=4.
∴動點P的軌跡C的方程:
x2
9
+
y2
4
=1

(2)設P(x,y),則
PF1
=(-
5
-x
,-y);
PF2
=(
5
-x,-y);
PF 1
PF 2
=x2-5+y2=3.
∵點P的軌跡C的方程:
x2
9
+
y2
4
=1

x2-5+y2=3
x2
9
+
y2
4
=1
?y2=
4
5
?|y|=
2
5
5

∴S=
1
2
|F1F2|•|y|=
1
2
×2
5
×
2
5
5
=2.
(3)設M(x1,y1),N(x2,y2),
把直線MN的方程為y=kx+3代入 
x2
9
+
y2
4
=1
消去x整理得
:(4+9k2)x2+54kx+45=0
∵△=54×54k2-4×45(4+9k2)≥0
∴k2
5
9
…①
∴x1+x2=
-54k
4+9k2
…②,
x1•x2=
45
4+9k2
…③
DM
DN
,
∴x1=λx2…④
由②③④并消去x1與x2…并整理得:
(1+λ)2
λ
=
324k2
20+45k2

再由①可得4≤
(1+t)2
t
36
5

解得
1
5
≤t≤5
當k不存在時此時MN為短軸容易得t=
1
5
或5
綜上可知λ取值范圍為[
1
5
,5]
點評:本題綜合考查了直線與橢圓的位置關系以及向量共線問題.直線與圓錐曲線的位置關系,由于集中交匯了直線,圓錐曲線兩章的知識內(nèi)容,綜合性強,能力要求高,還涉及到函數(shù),方程,不等式,平面幾何等許多知識,可以有效的考查函數(shù)與方程的思想,數(shù)形結合的思想,分類討論的思想和轉化化歸的思想,因此,這一部分內(nèi)容也成了高考的熱點和重點,一般是以壓軸題的形式出現(xiàn).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知動點P的軌跡方程為:
x2
4
-
y2
5
=1(x>2),O是坐標原點.
①若直線x-my-3=0截動點P的軌跡所得弦長為5,求實數(shù)m的值;
②設過P的軌跡上的點P的直線與該雙曲線的兩漸近線分別交于點P1、P2,且點P分有向線段
P1P2
所成的比為λ(λ>0),當λ∈[
3
4
3
2
]時,求|
OP1
|•|
OP2
|的最值.

查看答案和解析>>

科目:高中數(shù)學 來源:學習周報 數(shù)學 人教課標高二版(A選修1-1) 2009-2010學年 第18期 總第174期 人教課標版(A選修1-1) 題型:044

已知雙曲線C以y=0為漸近線,且過點A(3,2).

(1)求雙曲線C的標準方程;

(2)已知動點P與雙曲線C的兩個焦點所連線段長的和為6,求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:學習周報 數(shù)學 人教課標版高二(A選修2-1) 2009-2010學年 第18期 總第174期 人教課標版(A選修2-1) 題型:044

已知雙曲線C以y=0為漸近線,且過點A(3,2).

(1)求雙曲線C的標準方程;

(2)已知動點P與雙曲線C的兩個焦點所連線段長的和為6,求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P(a,b)(b≠0)是平面直角坐標系xOy中的點,l是經(jīng)過原點與點(1,b)的直線,記Q是直線l與拋物線x2=2pyp≠0)的異于原點的交點

⑴.已知a=1,b=2,p=2,求點Q的坐標。

⑵.已知點P(a,b)(ab≠0)在橢圓+y2=1上,p=,求證:點Q落在雙曲線4x2-4y2=1上。

⑶.已知動點P(a,b)滿足ab≠0,p=,若點Q始終落在一條關于x軸對稱的拋物線上,試問動點P的軌跡落在哪種二次曲線上,并說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(上海卷理20)設P(a,b)(b≠0)是平面直角坐標系xOy中的點,l是經(jīng)過原點與點(1,b)的直線,記Q是直線l與拋物線x2=2pyp≠0)的異于原點的交點

⑴已知a=1,b=2,p=2,求點Q的坐標.

⑵已知點P(a,b)(ab≠0)在橢圓+y2=1上,p=,求證:點Q落在雙曲線4x2-4y2=1上.

⑶已知動點P(a,b)滿足ab≠0,p=,若點Q始終落在一條關于x軸對稱的拋物線上,試問動點P的軌跡落在哪種二次曲線上,并說明理由.

查看答案和解析>>

同步練習冊答案