若拋物線的方程為y=-2x2,則其焦點(diǎn)坐標(biāo)為(  )
分析:化拋物線的方程為標(biāo)準(zhǔn)方程,再確定焦點(diǎn)坐標(biāo).
解答:解:由題意,x2=-
y
2
,故其焦點(diǎn)在y軸負(fù)半軸上,
焦點(diǎn)坐標(biāo)為(0,-
1
8
)
,
故選A.
點(diǎn)評:本題主要考查了拋物線的標(biāo)準(zhǔn)方程.解題的時候注意拋物線的焦點(diǎn)在x軸還是在y軸.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

拋物線C的方程為y=ax2(a<0),過拋物線C上一點(diǎn)P(x0,y0)(x0≠0)作斜率為k1,k2的兩條直線分別交拋物線C于A(x1,y1)B(x2,y2)兩點(diǎn)(P,A,B三點(diǎn)互不相同),且滿足k2+λk1=0(λ≠0且λ≠-1).
(Ⅰ)求拋物線C的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(Ⅱ)設(shè)直線AB上一點(diǎn)M,滿足
BM
MA
,證明線段PM的中點(diǎn)在y軸上;
(Ⅲ)當(dāng)λ=1時,若點(diǎn)P的坐標(biāo)為(1,-1),求∠PAB為鈍角時點(diǎn)A的縱坐標(biāo)y1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

15、若過點(diǎn)P(-2,0)作直線l與拋物線y2=8x僅有一個公共點(diǎn),則直線l的方程為
y=0,或 x-y+2=0,或 x+y+2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的方程為y2=2px(p>0),且拋物線上各點(diǎn)與焦點(diǎn)距離的最小值為2,若點(diǎn)M在此拋物線上運(yùn)動,點(diǎn)N與點(diǎn)M關(guān)于點(diǎn)A(1,1)對稱,則點(diǎn)N的軌跡方程為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

若拋物線的方程為y=-2x2,則其焦點(diǎn)坐標(biāo)為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

同步練習(xí)冊答案