精英家教網 > 高中數學 > 題目詳情

【題目】下圖所示的畢達格拉斯樹畫是由圖(i)利用幾何畫板或者動態(tài)幾何畫板Geogebra做出來的圖片,其中四邊形ABCD.AEFG.PQBE都是正方形.如果改變圖(i)中的大小會得到更多不同的“樹形”.

1)在圖(i)中,,且,求AQ;

2)在圖(ii)中,,,設,求AQ的最大值

【答案】1;(2AQ的最大值為.

【解析】

1)先在中利用勾股定理求出的長,由于,所以,然后在中,利用余弦定理可求出AQ的長;

2)在中,先利用余弦定理表示出,再利用正弦定理表示出,然后在中利用余弦定理得,從而可求出其最大值;或者如圖,過ABE垂線交BEM,交PQN,,再在 中利用勾股定理表示出,從而可求出其最大值.

解:(1)當時,,

中,

.

2)法(一)

中,

中,

中,

時,.

法(二)

ABE垂線交BEM,交PQN.

同法(—)

下同法(一)

答:(1;(2AQ的最大值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】我國古代有著輝煌的數學研究成果.《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、……《緝古算經》等10部專著,有著十分豐富多彩的內容,是了解我國古代數學的重要文獻.這10部專著中有7部產生于魏晉南北朝時期.某中學擬從這10部專著中選擇2部作為“數學文化”校本課程學習內容,則所選2部專著中至少有一部是魏晉南北朝時期專著的選法為( )

A. 45 種B. 42 種C. 28 種D. 16種

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,PA垂直于以AB為直徑的圓所在平面,C為圓上異于AB的任意一點,垂足為E,點FPB上一點,則下列判斷中不正確的是( )﹒

A.平面PACB.C.D.平面平面PBC

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】黃金螺旋線又名鸚鵡螺曲線,是自然界最美的鬼斧神工。就是在一個黃金矩形(寬除以長約等于0.6的矩形)先以寬為邊長做一個正方形,然后再在剩下的矩形里面再以其中的寬為邊長做一個正方形,以此循環(huán)做下去,最后在所形成的每個正方形里面畫出1/4圓,把圓弧線順序連接,得到的這條弧線就是“黃金螺旋曲線了。著名的“蒙娜麗莎”便是符合這個比例,現把每一段黃金螺旋線與其每段所在的正方形所圍成的扇形面積設為,每扇形的半徑設為滿足,若將的每一項按照上圖方法放進格子里,每一小格子的邊長為1,記前項所占的對應正方形格子的面積之和為,則下列結論錯誤的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中華民族具有五千多年連綿不斷的文明歷史,創(chuàng)造了博大精深的中華文化,為人類文明進步作出了不可磨滅的貢獻.為弘揚傳統(tǒng)文化,某校組織了國學知識大賽,該校最終有四名選手、、參加了總決賽,總決賽設置了一、二、三等獎各一個,無并列.比賽結束后,說:“你沒有獲得一等獎”,說:“你獲得了二等獎”;對大家說:“我未獲得三等獎”,、說:“你媽三人中有一人未獲獎”,四位選手中僅有一人撒謊,則選手獲獎情形共計__________種.(用數字作答)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從某企業(yè)生產的某種產品中抽取100件,測量這些產品的一項質量指標值,由測量表得如下頻數分布表:

質量指標值分組

[75,85)

[85,95)

[95,105)

[105,115)

[115,125)

頻數

6

26

38

22

8

I)在答題卡上作出這些數據的頻率分布直方圖:

II)估計這種產品質量指標值的平均數及方差(同一組中的數據用該組區(qū)間的中點值作代表);

III)根據以上抽樣調查數據,能否認為該企業(yè)生產的這種產品符合質量指標值不低于95的產品至少要占全部產品的80%的規(guī)定?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】山西省2021年高考將實施新的高考改革方案.考生的高考總成績將由3門統(tǒng)一高考科目成績和自主選擇的3門普通高中學業(yè)水平等級考試科目成績組成,總分為750分.其中,統(tǒng)一高考科目為語文、數學、外語,自主選擇的3門普通高中學業(yè)水平等級考試科目是從物理、化學、生物、歷史、政治、地理6科中選擇3門作為選考科目,語、數、外三科各占150分,選考科目成績采用“賦分制”,即原始分數不直接用,而是按照學生分數在本科目考試的排名來劃分等級并以此打分得到最后得分。根據高考綜合改革方案,將每門等級考試科目中考生的原始成績從高到低分為共8個等級.參照正態(tài)分布原則,確定各等級人數所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.等級考試科目成績計入考生總成績時,將A至E等級內的考生原始成績,依照等比例轉換法則,分別轉換到八個分數區(qū)間,得到考生的等級成績。舉例說明1:甲同學化學學科原始分為65分,化學學科 等級的原始分分布區(qū)間為,則該同學化學學科的原始成績屬等級,而等級的轉換分區(qū)間為那么,甲同學化學學科的轉換分為:設甲同學化學科的轉換等級分為 ,求得.四舍五入后甲同學化學學科賦分成績?yōu)?6分。舉例說明2:乙同學化學學科原始分為69分,化學學科等級的原始分分布區(qū)間為則該同學化學學科的原始成績屬等級.而等級的轉換分區(qū)間為這時不用公式,乙同學化學學科賦分成績直接取下端點70分。現有復興中學高一年級共3000人,為給高一學生合理選科提供依據,對六個選考科目進行測試,其中物理考試原始成績基本服從正態(tài)分布。且等級為 所在原始分分布區(qū)間為,且等級為所在原始分分布區(qū)間為,且等級為所在原始分分布區(qū)間為

(1)若小明同學在這次考試中物理原始分為84分,小紅同學在這次考試中物理原始分為72分,求小明和小紅的物理學科賦分成績;(精確到整數).

(2)若以復興中學此次考試頻率為依據,在學校隨機抽取4人,記這4人中物理原始成績在區(qū)間 的人數,求的數學期望和方差.(精確到小數點后三位數).

附:若隨機變量滿足正態(tài)分布,給出以下數據

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱中,側面為矩形,,,為棱的中點,交于點,側面,的中點.

(1)證明:平面;

(2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在研究塞卡病毒Zika virus某種疫苗的過程中,為了研究小白鼠連續(xù)接種該種疫苗后出現癥狀的情況,做接種試驗,試驗設計每天接種一次,連續(xù)接種3天為一個接種周期已知小白鼠接種后當天出現癥狀的概率為假設每次接種后當天是否出現癥狀與上次接種無關

1若出現癥狀即停止試驗,求試驗至多持續(xù)一個接種周期的概率

2若在一個接種周期內出現2次貨3次癥狀,則這個接種周期結束后終止試驗試驗至多持續(xù)3個周期,設接種試驗持續(xù)的接種周期數為,的分布列及數學期望

查看答案和解析>>

同步練習冊答案