函數(shù)f(x)=+的定義域?yàn)?/P>
A.[-2,+∞)
B.(-∞,-2]
C.R
D.[-2,1)∪(1,+∞)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:江蘇省泰州中學(xué)2012屆高三上學(xué)期期中考試數(shù)學(xué)試題(人教版) 題型:044
A、B是函數(shù)f(x)=+的圖象上的任意兩點(diǎn),且=(+),已知點(diǎn)M的橫坐標(biāo)為.
(Ⅰ)求證:M點(diǎn)的縱坐標(biāo)為定值;
(Ⅱ)若Sn=f()+f()+…+f(),n∈N+且n≥2,求Sn;
(Ⅲ)已知數(shù)列{an}的通項(xiàng)公式為an=.Tn為其前n項(xiàng)的和,若Tn<λ(Sn+1+1),對(duì)一切正整數(shù)都成立,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:廣東省珠海一中2012屆高三高考模擬數(shù)學(xué)理科試題 題型:044
(1)若任意直線l過點(diǎn)F(0,1),且與函數(shù)f(x)=x2的圖象C交于兩個(gè)不同的點(diǎn)A、B,分別過點(diǎn)A、B作C的切線,兩切線交于點(diǎn)M,證明:點(diǎn)M的縱坐標(biāo)是一個(gè)定值,并求出這個(gè)定值;
(2)若不等式f(x)≥g(x)恒成立,g(x)=alnx(a>0)求實(shí)數(shù)a的取值范圍;
(3)求證:,(其中e為無理數(shù),約為2.71828).(注:上式右端是:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三單元測試文科數(shù)學(xué)試卷 題型:解答題
設(shè)函數(shù)f(x)=ax+ (a,b∈Z),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方
程為y=3.
(1)求f(x)的解析式;
(2)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,
并求出此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
東升中學(xué)的學(xué)生王丫在設(shè)計(jì)計(jì)算函數(shù)
f(x)=+的值的程序時(shí),發(fā)現(xiàn)當(dāng)sinx和cosx滿足方程2y2-(+1)y+k=0時(shí),無論輸入任意實(shí)數(shù)k,f(x)的值都不變,你能說明其中的道理嗎?這個(gè)定值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
東升中學(xué)的學(xué)生王丫在設(shè)計(jì)計(jì)算函數(shù)
f(x)=的值的程序時(shí),發(fā)現(xiàn)當(dāng)sinx和cosx滿足方程2y2-(+1)y+k=0時(shí),無論輸入任意實(shí)數(shù)k,f(x)的值都不變,你能說明其中的道理嗎?這個(gè)定值是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com