【題目】一種作圖工具如圖1所示.是滑槽的中點,短桿可繞轉(zhuǎn)動,長桿通過處鉸鏈與連接,上的栓子可沿滑槽AB滑動,且,.當栓子在滑槽AB內(nèi)作往復運動時,帶動轉(zhuǎn)動一周(不動時,也不動),處的筆尖畫出的曲線記為.以為原點,所在的直線為軸建立如圖2所示的平面直角坐標系.

)求曲線C的方程;

)設(shè)動直線與兩定直線分別交于兩點.若直線總與曲線有且只有一個公共點,試探究:的面積是否存在最小值?若存在,求出該最小值;若不存在,說明理由.

【答案】;()存在最小值8

【解析】

)設(shè)點,依題意,

,且,

所以,且

由于當點不動時,點也不動,所以不恒等于0,

于是,故,代入,可得,

即所求的曲線的方程為

)(1)當直線的斜率不存在時,直線,都有

2)當直線的斜率存在時,設(shè)直線,

消去,可得

因為直線總與橢圓有且只有一個公共點,

所以,即

又由可得;同理可得

由原點到直線的距離為,可得

代入得,

時,;

時,

,則,所以,

當且僅當時取等號.

所以當時,的最小值為8

綜合(1)(2)可知,當直線與橢圓在四個頂點處相切時,的面積取得最小值8

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在底面為正方形的四棱錐中,平面,點分別在棱,上,且滿足.

(1)證明:平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),的在數(shù)集上都有定義,對于任意的,當時,成立,則稱是數(shù)集的限制函數(shù).

(1)求上的限制函數(shù)的解析式;

(2)證明:如果在區(qū)間上恒為正值,則上是增函數(shù);[注:如果在區(qū)間上恒為負值,則在區(qū)間上是減函數(shù),此結(jié)論無需證明,可以直接應用]

(3)利用(2)的結(jié)論,求函數(shù)上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)向量,,其中,則下列判斷錯誤的是( )

A.向量軸正方向的夾角為定值(與、之值無關(guān))

B.的最大值為

C.夾角的最大值為

D.的最大值為l

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對年利率為的連續(xù)復利,要在年后達到本利和,則現(xiàn)在投資值為是自然對數(shù)的底數(shù).如果項目的投資年利率為的連續(xù)復利.

(1)現(xiàn)在投資5萬元,寫出滿年的本利和,并求滿10年的本利和;(精確到0.1萬元)

(2)一個家庭為剛出生的孩子設(shè)立創(chuàng)業(yè)基金,若每年初一次性給項目投資2萬元,那么,至少滿多少年基金共有本利和超過一百萬元?(精確到1年)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左,右焦點分別為,,且經(jīng)過點

(Ⅰ)求橢圓的標準方程;

(Ⅱ)過點作一條斜率不為的直線與橢圓相交于兩點,記點關(guān)于軸對稱的點為.證明:直線經(jīng)過軸上一定點,并求出定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求的極值;

(Ⅱ)當時,設(shè),求證:曲線存在兩條斜率為且不重合的切線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,分別是橢圓短軸的上下兩個端點,是橢圓的左焦點,P是橢圓上異于點,的點,若的邊長為4的等邊三角形.

寫出橢圓的標準方程;

當直線的一個方向向量是時,求以為直徑的圓的標準方程;

設(shè)點R滿足:,,求證:的面積之比為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已如長方形 中, ,M為的中點,將 沿 折起,使得平面 平面,

1)求證:

2)若點 是線段 上的中點,求三棱錐與四棱錐的體積的比值 .

查看答案和解析>>

同步練習冊答案