【題目】為了響應教育部頒布的《關于推進中小學生研學旅行的意見》,某校計劃開設八門研學旅行課程,并對全校學生的選課意向進行調查(調查要求全員參與,每個學生必須從八門課程中選出唯一一門課程).本次調查結果如下.圖中,課程A,B,C,D,E為人文類課程,課程F,G,H為自然科學類課程.為進一步研究學生選課意向,結合上面圖表,采取分層抽樣方法從全校抽取1%的學生作為研究樣本組(以下簡稱“組M”).
(Ⅰ)在“組M”中,選擇人文類課程和自然科學類課程的人數各有多少?
(Ⅱ)某地舉辦自然科學營活動,學校要求:參加活動的學生只能是“組M”中選擇F課程或G課程的同學,并且這些同學以自愿報名繳費的方式參加活動.選擇F課程的學生中有x人參加科學營活動,每人需繳納2000元,選擇G課程的學生中有y人參加該活動,每人需繳納1000元.記選擇F課程和G課程的學生自愿報名人數的情況為(x,y),參加活動的學生繳納費用總和為S元.
(。┊擲=4000時,寫出(x,y)的所有可能取值;
(ⅱ)若選擇G課程的同學都參加科學營活動,求S>4500元的概率.
【答案】解:(Ⅰ)選擇人文類課程的人數為(100+200+400+200+300)×1%=12(人),
選擇自然科學類課程的人數為(300+200+300)×1%=8(人).
(Ⅱ)(ⅰ)當繳納費用S=4000時,(x,y)只有兩種取值情況:(2,0),(1,2);
(ⅱ)設事件A:若選擇G課程的同學都參加科學營活動,繳納費用總和S超過4500元.
在“組M”中,選擇F課程和G課程的人數分別為3人和2人.
由于選擇G課程的兩名同學都參加,下面考慮選擇F課程的3位同學參加活動的情況.
設每名同學報名參加活動用a表示,不參加活動用b表示,
則3名同學報名參加活動的情況共有以下8種情況:aaa,aab,aba,baa,bba,bab,abb,bbb.
當繳納費用總和S超過4500元時,選擇F課程的同學至少要有2名同學參加,有如下4種:aaa,aab,aba,baa.
所以,S>4500元的概率
【解析】(Ⅰ)利用頻率分布直方圖能求出選擇人文類課程的人數和選擇自然科學類課程的人數.(Ⅱ)(ⅰ)當繳納費用S=4000時,利用列舉法能求出(x,y)的不同的取值情況.(ⅱ)設事件A:若選擇G課程的同學都參加科學營活動,繳納費用總和S超過4500元.在“組M”中,選擇F課程和G課程的人數分別為3人和2人.由于選擇G課程的兩名同學都參加,下面考慮選擇F課程的3位同學參加活動的情況.設每名同學報名參加活動用a表示,不參加活動用b表示,利用列舉法能求出S>4500元的概率.
【考點精析】本題主要考查了頻率分布直方圖的相關知識點,需要掌握頻率分布表和頻率分布直方圖,是對相同數據的兩種不同表達方式.用緊湊的表格改變數據的排列方式和構成形式,可展示數據的分布情況.通過作圖既可以從數據中提取信息,又可以利用圖形傳遞信息才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】春節(jié)來臨,有農民工兄弟A、B、C、D四人各自通過互聯(lián)網訂購回家過年的火車票,若訂票成功即可獲得火車票,即他們獲得火車票與否互不影響.若A、B、C、D獲得火車票的概率分別是 ,其中p1>p3 , 又 成等比數列,且A、C兩人恰好有一人獲得火車票的概率是 .
(1)求p1 , p3的值;
(2)若C、D是一家人且兩人都獲得火車票才一起回家,否則兩人都不回家.設X表示A、B、C、D能夠回家過年的人數,求X的分布列和期望EX.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 ,其中a∈R. (Ⅰ)給出a的一個取值,使得曲線y=f(x)存在斜率為0的切線,并說明理由;
(Ⅱ)若f(x)存在極小值和極大值,證明:f(x)的極小值大于極大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設集合A2n={1,2,3,…,2n}(n∈N* , n≥2).如果對于A2n的每一個含有m(m≥4)個元素的子集P,P中必有4個元素的和等于4n+1,稱正整數m為集合A2n的一個“相關數”. (Ⅰ)當n=3時,判斷5和6是否為集合A6的“相關數”,說明理由;
(Ⅱ)若m為集合A2n的“相關數”,證明:m﹣n﹣3≥0;
(Ⅲ)給定正整數n.求集合A2n的“相關數”m的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】等比數列{an}的各項均為正數,且 .
(1)求數列{an}的通項公式;
(2)設bn=log3a1+log3a2+…+log3an , 求數列 的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在(0,+∞)上的單調遞減函數,f′(x)是其導函數,若 >x,則下列不等關系成立的是( )
A.f(2)<2f(1)
B.3f(2)>2f(3)
C.ef(e)<f(e2)
D.ef(e2)>f(e3)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx﹣x+m(m∈R)的圖象與x軸相交于A(x1 , 0),B(x2 , 0)兩點,且x1<x2 .
(I)若函數f(x)的最大值為2,求m的值;
(Ⅱ)若 恒成立,求實數k的取值范圍;
(Ⅲ)證明:x1x2<1.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:x2+4y2=4.
(1)求橢圓C的離心率;
(2)橢圓C的長軸的兩個端點分別為A,B,點P在直線x=1上運動,直線PA,PB分別與橢圓C相交于M,N兩個不同的點,求證:直線MN與x軸的交點為定點.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com