【題目】定義在非零實(shí)數(shù)集上的函數(shù)滿足,且是區(qū)間上的遞增函數(shù).
(1)求的值;
(2)求證: ;
(3)解不等式.
【答案】解:(1)令x=y=1,則f(1)="f(1)+" f(1) ∴f(1)=0
令x=y=-1,則f(1)=f(-1)+ f(-1) ∴f(-1)=0
(2)令y=-1,則f(-x)=f(x)+f(-1)="f(x) " ∴f(-x)=f(x)
(3)據(jù)題意可知,函數(shù)圖象大致如下:
【解析】試題分析:(1)根據(jù),令可求得.(2)根據(jù)證明.(3)由可將變形為,由(1)可知,所以等價(jià)于.根據(jù)函數(shù)的單調(diào)性可得關(guān)于的不等式.
試題解析:解:(1)令,則
令,則
(2)令,則
,
∴為定義域上的偶函數(shù).
(3)據(jù)題意可知,函數(shù)圖象大致如下:
,
或,
或
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=|x|﹣2|x+3|.
(1)解不等式f(x)≥2;
(2)若存在x∈R使不等式f(x)﹣|3t﹣2|≥0成立,求參數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著互聯(lián)網(wǎng)的發(fā)展,移動支付又稱手機(jī)支付逐漸深入人民群眾的生活某學(xué)校興趣小組為了了解移動支付在人民群眾中的熟知度,對歲的人群隨機(jī)抽樣調(diào)查,調(diào)查的問題是你會使用移動支付嗎?”其中,回答“會”的共有50個(gè)人,把這50個(gè)人按照年齡分成5組,并繪制出頻率分布表部分?jǐn)?shù)據(jù)模糊不清如表:
分組 | 頻數(shù) | 頻率 | |
第1組 | 10 | ||
第2組 | |||
第3組 | 15 | ||
第4組 | |||
第5組 | 2 | ||
合計(jì) | 50 |
表中處的數(shù)據(jù)分別是多少?
從第1組,第3組,第4組中用分層抽樣的方法抽取6人,求每組抽取的人數(shù).
在抽取的6人中再隨機(jī)抽取2人,求所抽取的2人來自同一個(gè)組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C1: + =1(a>0,b>0)的離心率為 ,其右焦點(diǎn)到直線2ax+by﹣ =0的距離為 .
(1)求橢圓C1的方程;
(2)過點(diǎn)P(0,﹣ )的直線l交橢圓C1于A,B兩點(diǎn).
①證明:線段AB的中點(diǎn)G恒在橢圓C2: + =1的內(nèi)部;
②判斷以AB為直徑的圓是否恒過定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的離心率是,過點(diǎn)的動直線與橢圓相交于兩點(diǎn),當(dāng)直線與軸平行時(shí),直線被橢圓截得的線段長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)在軸上是否存在異于點(diǎn)的定點(diǎn),使得直線變化時(shí),總有?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若和分別是先后拋擲一枚骰子得到的點(diǎn)數(shù),求對任意, 恒成立的概率;
(2)若是從區(qū)間任取的一個(gè)數(shù), 是從任取的一個(gè)數(shù),求函數(shù)的圖像與軸有交點(diǎn)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】網(wǎng)格紙的各小格都是邊長為1的正方形,圖中粗實(shí)線畫出的是一個(gè)幾何體的三視圖,其中正視圖是正三角形,則該幾何體的外接球表面積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)正整數(shù),若它的每個(gè)質(zhì)因數(shù)都至少是兩重的(即每個(gè)質(zhì)因數(shù)乘方次數(shù)都不小于2),則稱該正整數(shù)為“漂亮數(shù)”.相鄰兩個(gè)正整數(shù)皆為“漂亮數(shù)”,就稱它們是一對“孿生漂亮數(shù)”.例如8與9就是一對“孿生漂亮數(shù)”.請你再找出兩對“孿生漂亮數(shù)”來.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,離心率為的橢圓的左頂點(diǎn)為,過原點(diǎn)的直線(與坐標(biāo)軸不重合)與橢圓交于兩點(diǎn),直線分別與軸交于, 兩點(diǎn).若直線斜率為 時(shí), .
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)試問以為直徑的圓是否經(jīng)過定點(diǎn)(與直線的斜率無關(guān))?請證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com