在計(jì)算“1×2+2×3+…+n(n+1)”時(shí),某同學(xué)學(xué)到了如下一種方法:先改寫第k項(xiàng):k(k+1)=[k(k+1)(x+2)-(k-1)k(k+1)],由此得

1×2=(1×2×3-0×1×2)

2×3=(2×3×4-1×2×3)

n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]

相加,得

1×2+2×3+…+n(n+1)=n(n+1)(n+2)

類比上述方法,請(qǐng)你計(jì)算“1×2×3+2×3×4+…+n(n+1)(n+2)”,其結(jié)果為_(kāi)_______.

答案:1/4×n(n+1)(n+2)(n+3)
解析:


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在計(jì)算“1×2+2×3+…+n(n+1)”時(shí),某同學(xué)學(xué)到了如下一種方法:先改寫第k項(xiàng):k(k+1)=
1
3
[k(k+1)(k+2)-(k-1)k(k+1)]由此得
1×2=
1
3
(1×2×3-0×1×2),
2×3=
1
3
(2×3×4-1×2×3)

n(n+1)=
1
3
[n(n+1)(n+2)-(n-1)n(n+1)]
相加,得1×2×3+…+n(n+1)=
1
3
n(n+1)(n+2)
類比上述方法,請(qǐng)你計(jì)算“1×2×3+2×3×4+…+n(n+1)(n+2)”,

其結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在計(jì)算“1×2+2×3+…+n(n+1)”時(shí),有如下方法:
先改寫第k項(xiàng):k(k+1)=
1
3
[k(k+1)(k+2)-(k-1)k(K+1)],
由此得:1×2=
1
3
(1×2×3-0×1×2),
2×3=
1
3
(2×3×4-1×2×3),…,
n(n+1)=
1
3
[n(n+1)(n+2)-(n-1)n(n+1)],
相加得:1×2+2×3+…+n(n+1)=
1
3
n
(n+1)(n+2).
類比上述方法,請(qǐng)你計(jì)算“1×3+2×4+…+n(n+2)”,其結(jié)果寫成關(guān)于n的一次因式的積的形式為:
1
6
n(n+1)(2n+7)
1
6
n(n+1)(2n+7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在計(jì)算“1×2+2×3+…n(n+1)”時(shí),先改寫第k項(xiàng):
k(k+1)=
1
3
[k(k+1)(k+2)-(k-1)k(k+1)],由此得1×2=
1
3
(1×2×3-0×1×2),2×3=
1
3
(2×3×4-1×2×3),..
n(n+1)=
1
3
[n(n+1)(n+2)-(n-1)n(n+1)],相加,得1×2+2×3+…+n(n+1)=
1
3
n(n+1)(n+2)

(1)類比上述方法,請(qǐng)你計(jì)算“1×2×3+2×3×4+…+n(n+1)(n+2)”的結(jié)果;
(2)試用數(shù)學(xué)歸納法證明你得到的等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 人教課標(biāo)高二版(A必修5) 2009-2010學(xué)年 第12期 總第168期 人教課標(biāo)版(A必修5) 題型:022

在計(jì)算“1×2+2×3+…+n(n+1)”時(shí),某同學(xué)想到了如下方法:先改寫第k項(xiàng),k(k+1)=[k(k+1)·(k+2)-(k-1)k(k+1)],由此得:

1×2=(1×2×3-0×1×2),

2×3=(2×3×4-1×2×3),

n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)].

上述等式相加,得

1×2+2×3+…+n(n+1)=n(n+1)·(n+2).

類比上述方法,請(qǐng)你計(jì)算“1×2×3+2×3×4+…+n(n+1)(n+2)”,其結(jié)果寫成關(guān)于n的一次因式的積的形

式為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

在計(jì)算“1×2+2×3+…+n(n+1)”時(shí),有如下方法:
先改寫第k項(xiàng):k(k+1)=數(shù)學(xué)公式[k(k+1)(k+2)-(k-1)k(K+1)],
由此得:1×2=數(shù)學(xué)公式(1×2×3-0×1×2),
2×3=數(shù)學(xué)公式(2×3×4-1×2×3),…,
n(n+1)=數(shù)學(xué)公式[n(n+1)(n+2)-(n-1)n(n+1)],
相加得:1×2+2×3+…+n(n+1)=數(shù)學(xué)公式(n+1)(n+2).
類比上述方法,請(qǐng)你計(jì)算“1×3+2×4+…+n(n+2)”,其結(jié)果寫成關(guān)于n的一次因式的積的形式為:________.

查看答案和解析>>

同步練習(xí)冊(cè)答案