如圖,設(shè)圓x2+y2=12與拋物線x2=4y相交于A,B兩點,F(xiàn)為拋物線的焦點.
(I)若過點F且斜率為1的直線l與拋物線和圓交于四個不同的點,從左至右依次為P1,P2,P3,P4,求|P1P2|+|P3+P4|的值;
(II)若直線m與拋物線相交于M,N兩點,且與圓相切,切點D在劣弧上,求|MF|+|NF|的取值范圍.

【答案】分析:(I)由圓的方程和拋物線的方程聯(lián)解,求得交點A、B的坐標(biāo),從而判斷直線l與圓交于P1、P3,直線l與拋物線交于P2、P4,
另|P1P2|+|P3+P4|的表達式用P1,P2,P3,P4的四點的橫坐標(biāo)表示,然后根據(jù)根與系數(shù)的關(guān)系,代入表達式,即解.
(II)先設(shè)直線m的方程y=k+b,交點M、N坐標(biāo),再用點M、N縱坐標(biāo)表示出|MF|+|NF|,由與圓相切,得到k與b的關(guān)系,
消去k用b表示|MF|+|NF|,即得到關(guān)于b的一個函數(shù),由,得到k的范圍,由此求得b的范圍,
再將b的代入|MF|+|NF|的函數(shù)關(guān)系式中并求出其范圍.
解答:解:(1)由,得,
即A(,2),B(,2).
∵點F坐標(biāo)為(0,1),∴,
所以直線l與圓交于P1、P3兩點,與拋物線交于P2、P4兩點,
設(shè)P1(x1,y1),P2(x2,y2),P3(x3,y3),P4(x4,y4
把直線l方程:y=x+1代入x2=4y,得x2-4x-4=0,∴x2+x4=4;
把直線l方程:y=x+1代入x2+y2=12,得2x2+2x-11=0,∴x1+x3=-1


=
=
所以|P1P2|+|P3+P4|的值等于
(II)設(shè)直線m的方程為y=k+b(b>0),
代入拋物線方程得x2-4kx-4b=0,
設(shè)點M(x1,y1),N(x2,y2),則x1+x2=4k,
則y1+y2=k(x1+x2)+2b=4k2+2b,
∵直線m與該圓相切,∴,
又|MF|=y1+1,|NF|=y2+1,
∴|MF|+|NF|=y1+y2+2=4k2+2b+2=
,∴分別過A、B的圓的切線的斜率為
∴0≤k2≤2,∴,∴
所以|MF|+|NF|的取值范圍為
點評:此題考查用坐標(biāo)法解決圓錐曲線問題,在解題過程中還考查了弦長公式的運用,同時還考查學(xué)生的計算技巧中設(shè)而不求的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,設(shè)圓x2+y2=12與拋物線x2=4y相交于A,B兩點,F(xiàn)為拋物線的焦點.
(I)若過點F且斜率為1的直線l與拋物線和圓交于四個不同的點,從左至右依次為P1,P2,P3,P4,求|P1P2|+|P3+P4|的值;
(II)若直線m與拋物線相交于M,N兩點,且與圓相切,切點D在劣弧
AB
上,求|MF|+|NF|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,過圓x2+y2=4與x的兩個交點A、B,作圓的切線AC、BD,再過圓上任意一點H作圓的切線,交AC、BD于C、D兩點,設(shè)AD、BC的交點為R.
(1)求動點R的軌跡E方程;
(2)過曲線E的右焦點作直線l交曲線E于M、N兩點,交y軸于P點,記
PM
=λ1
MF
PN
=λ2
NF
,求證:λ12為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•臨沂二模)如圖,過圓x2+y2=4與x軸的兩個交點A、B作圓的切線AC、BD,再過圓上任意一點H作圓的切線,交AC、BD與C、D兩點,設(shè)AD、BC的交點為R.
(I)求動點R的軌跡E的方程;
(II)設(shè)E的上頂點為M,直線l交曲線E于P、Q兩點,問:是否存在這樣的直線l,使點G(1,0)恰為△PQM的垂心?若存在,求出直線l的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年浙江省紹興市高三質(zhì)量調(diào)研數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,設(shè)圓x2+y2=12與拋物線x2=4y相交于A,B兩點,F(xiàn)為拋物線的焦點.
(I)若過點F且斜率為1的直線l與拋物線和圓交于四個不同的點,從左至右依次為P1,P2,P3,P4,求|P1P2|+|P3+P4|的值;
(II)若直線m與拋物線相交于M,N兩點,且與圓相切,切點D在劣弧上,求|MF|+|NF|的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案