如圖,某旅游區(qū)擬在公路l(南北向)旁開發(fā)一個拋物線形的人工湖,湖沿岸上每一點到公路l的距離與到A處的距離相等,并在湖中建造一個三角形的游樂區(qū)MNC,三個頂點M,N,C都在湖沿岸上,直線通道MN經過A處.經測算,A在公路l正東方向200米處,C在A的正西方向100米處,現(xiàn)以點C為坐標原點,以線段CA所在直線為x軸建立平面直角坐標系.
(1)求拋物線的方程;
(2)試確定直線通道MN的位置,使得三角形游樂區(qū)MNC的面積最小,并求出最小值.

【答案】分析:(1)由題意,可得拋物線的焦點A(100,0),從而可求p,進而可求拋物線方程
(2)設點M(x1,y1),N(x2,y2)直線MN的方程為x=ny+100,聯(lián)立直線與拋物線方程,根據方程根與系數(shù)關系,可得y1+y2,y1y2,代入|y1-y2|=,從而可S△CMN=|y1-y2|,結合二次函數(shù)的性質可求最小值
解答:解:(1)依題意,設所求的拋物線的方程為:y2=2px(p>0)
∵焦點A(100,0)
即p=200
∴所求的拋物線的方程為:y2=400x(p>0)
(2)設點M(x1,y1),N(x2,y2)直線MN的方程為x=ny+100
聯(lián)立可得y2-400ny-40000=0
∴y1+y2=400n,y1y2=-40000
∴|y1-y2|==
∴S△CMN=|y1-y2|==20000
當n=0時,即MN⊥AC時,△CMN的面積最小,最小面積為20000平方米
答:直線通道MN⊥AC時,游樂區(qū)CMN的面積最小,最小面積為20000平方米
點評:本題主要考查了由拋物線的性質求解拋物線方程,直線與拋物線位置關系的應用及方程的根與系數(shù)關系的應用
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,某旅游區(qū)擬在公路l(南北向)旁開發(fā)一個拋物線形的人工湖,湖沿岸上每一點到公路l的距離與到A處的距離相等,并在湖中建造一個三角形的游樂區(qū),三個頂點都在湖沿岸上,直線通道MN經過A.經測算,A在公路l正東方向200m處,C在A的正西方向100m處.現(xiàn)以點C為坐標原點,以線段CA所在直線為x軸,建立平面直角坐標系.
(1)求拋物線的方程;
(2)試判斷是否存在直線通道MN,使得三角形的游樂區(qū)的面積為20000
2
m2
?并作說明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,某旅游區(qū)擬在公路l(南北向)旁開發(fā)一個拋物線形的人工湖,湖沿岸上每一點到公路l的距離與到A處的距離相等,并在湖中建造一個三角形的游樂區(qū)MNC,三個頂點M,N,C都在湖沿岸上,直線通道MN經過A處.經測算,A在公路l正東方向200米處,C在A的正西方向100米處,現(xiàn)以點C為坐標原點,以線段CA所在直線為x軸建立平面直角坐標系.
(1)求拋物線的方程;
(2)試確定直線通道MN的位置,使得三角形游樂區(qū)MNC的面積最小,并求出最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省高三5月月考理科數(shù)學試卷(解析版) 題型:解答題

如圖,某旅游區(qū)擬在公路(南北向)旁開發(fā)一個拋物線形的人工湖,湖沿岸上每一點到公路的距離與到處的距離相等,并在湖中建造一個三角形的游樂區(qū),三個頂點都在湖沿岸上,直線通道經過處.經測算,在公路正東方向米處,的正西方向米處,現(xiàn)以點為坐標原點,以線段所在直線為軸建立平面直角坐標系,

(1)求拋物線的方程

(2)試確定直線通道的位置,使得三角形游樂區(qū)的面積最小,并求出最小值

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年福建省莆田四中高二(上)第二次月考數(shù)學試卷(理科)(解析版) 題型:解答題

如圖,某旅游區(qū)擬在公路l(南北向)旁開發(fā)一個拋物線形的人工湖,湖沿岸上每一點到公路l的距離與到A處的距離相等,并在湖中建造一個三角形的游樂區(qū),三個頂點都在湖沿岸上,直線通道MN經過A.經測算,A在公路l正東方向200m處,C在A的正西方向100m處.現(xiàn)以點C為坐標原點,以線段CA所在直線為x軸,建立平面直角坐標系.
(1)求拋物線的方程;
(2)試判斷是否存在直線通道MN,使得三角形的游樂區(qū)的面積為?并作說明.

查看答案和解析>>

同步練習冊答案