設(shè)f(x)=2x3+ax2+bx+1的導(dǎo)數(shù)為f′(x),若函數(shù)y=f′(x)的圖象關(guān)于直線x=-對(duì)稱,且f′(1)=0.
(1)求實(shí)數(shù)a,b的值;
(2)討論函數(shù)f(x)的單調(diào)性,并求出單調(diào)區(qū)間 。

(1)a=3、  b=—12;(2)單調(diào)等增區(qū)間為(-∞,-2)和(1,+∞),單調(diào)遞減區(qū)間為(-2,1)。

解析試題分析:(1) 因?yàn)閒′(x) 的圖象關(guān)于直線x=-對(duì)稱,所以,所以a=3;又f′(1)=0,所以b=—12。
(2)由(1)知,知f(x)=2x3+3x2-12x+1,所以f′(x)=6x2+6x-12=6(x-1)(x+2),
令f′(x)=0,得x=1或x=-2,
當(dāng)x∈(-∞,-2)時(shí),f′(x)>0,f(x)在(-∞,-2)上是增函數(shù);
當(dāng)x∈(-2,1)時(shí),f′(x)<0,f(x)在(-2,1)上是減函數(shù);
當(dāng)x∈(1,+∞)時(shí),f′(x)>0,f(x)在(1,+∞)上是增函數(shù)。
所以f(x)的單調(diào)等增區(qū)間為(-∞,-2)和(1,+∞),單調(diào)遞減區(qū)間為(-2,1)。
考點(diǎn):本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;二次函數(shù)的性質(zhì)。
點(diǎn)評(píng):當(dāng)f(x)不含參數(shù)時(shí),可通過解不等式f′(x)>0(或f′(x)<0)直接得到單調(diào)遞增(或單調(diào)遞減)區(qū)間。但要注意函數(shù)的定義域。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)函數(shù)為奇函數(shù),且在上為增函數(shù),  , 若對(duì)所有都成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(13分) 設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)上的最大值;
(2)記函數(shù),若函數(shù)有零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12分).已知函數(shù)f ()=, 若2)=1;
(1) 求a的值; (2)求的值;
(3)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知函數(shù)滿足
(1)求常數(shù)的值;  
(2)求使成立的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/bb/7/vn4qz.png" style="vertical-align:middle;" />的函數(shù)同時(shí)滿足:
①對(duì)于任意的,總有;         ②;
③若,則有成立。
的值;
的最大值;
若對(duì)于任意,總有恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
對(duì)于定義域?yàn)镈的函數(shù),若同時(shí)滿足下列條件:①在D內(nèi)單調(diào)遞增或單調(diào)遞減;②存在區(qū)間[],使在[]上的值域?yàn)閇];那么把()叫閉函數(shù).
(1)求閉函數(shù)符合條件②的區(qū)間[];
(2)判斷函數(shù)是否為閉函數(shù)?并說明理由;
(3)若函數(shù)是閉函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
設(shè),且,定義在區(qū)間內(nèi)的函數(shù)是奇函數(shù).
(1)求的取值范圍;
(2)討論函數(shù)的單調(diào)性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(附加題)本小題滿分10分
已知是定義在上單調(diào)函數(shù),對(duì)任意實(shí)數(shù)有:時(shí),.
(1)證明:
(2)證明:當(dāng)時(shí),;
(3)當(dāng)時(shí),求使對(duì)任意實(shí)數(shù)恒成立的參數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案