如圖,四邊形ABCD中,AB=AD=CD=1,BD=
2
,BD⊥CD.將四邊形ABCD沿對角線BD折成四面體A′-BCD,使平面A'BD⊥平面BCD,則BC與平面A′CD所成的角的正弦值為
3
3
3
3
分析:先證明BA′⊥平面A′CD,可得∠BCA′為BC與平面A′CD所成的角,即可求出BC與平面A′CD所成的角的正弦值.
解答:解:∵A′B=A′D=1,BD=
2
,∴A′B2+A′D2=BD2
∴BA′⊥A′D
∵平面A'BD⊥平面BCD,BD⊥CD,平面A'BD∩平面BCD=BD
∴CD⊥平面A'BD
∵BA′?平面A'BD
∴BA′⊥CD
∵A′D∩CD=D
∴BA′⊥平面A′CD
∴∠BCA′為BC與平面A′CD所成的角
∵CD=1,BD=
2
,
∴BC=
3

∴BC與平面A′CD所成的角的正弦值為
1
3
=
3
3

故答案為:
3
3
點評:本題考查的知識點是平面與平面垂直的性質及線面垂直的判定與性質,其中利用面面垂直的性質定理,確定BA′⊥平面A′CD是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD與A′ABB′都是邊長為a的正方形,點E是A′A的中點,A′A⊥平面ABCD.
(1) 求證:A′C∥平面BDE;
(2) 求證:平面A′AC⊥平面BDE
(3) 求平面BDE與平面ABCD所成銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(Ⅰ)證明PQ⊥平面DCQ;
(Ⅱ)求棱錐Q-ABCD的體積與棱錐P-DCQ的體積的比值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ABCD為矩形,且AD=2,AB=1,PA⊥平面ABCD,PA=1,E為BC的中點.
(1)求點C到面PDE的距離;  
(2)求二面角P-DE-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ABCD內接于⊙O,如果它的一個外角∠DCE=64°,那么∠BOD
128°
128°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(1)證明:平面PQC⊥平面DCQ;
(2)求二面角D-PQ-C的余弦值.

查看答案和解析>>

同步練習冊答案