如圖,橢圓經(jīng)過點P(1.),離心率e=,直線l的方程為x=4.

(1)求橢圓C的方程;
(2)AB是經(jīng)過右焦點F的任一弦(不經(jīng)過點P),設直線AB與直線l相交于點M,記PA,PB,PM的斜率分別為.問:是否存在常數(shù)λ,使得?若存在,求λ的值;若不存在,說明理由.
(1)(2)存在
    ①        ②
②代入①得
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(2012•廣東)在平面直角坐標系xOy中,已知橢圓C:的離心率,且橢圓C上的點到點Q(0,2)的距離的最大值為3.
(1)求橢圓C的方程;
(2)在橢圓C上,是否存在點M(m,n),使得直線l:mx+ny=1與圓O:x2+y2=1相交于不同的兩點A、B,且△OAB的面積最大?若存在,求出點M的坐標及對應的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓上的點M與橢圓右焦點的連線與x軸垂直,且OM(O是坐標原點)與橢圓長軸和短軸端點的連線AB平行.
(1)求橢圓的離心率;
(2)過且與AB垂直的直線交橢圓于P、Q,若的面積是20,求此時橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的左右焦點為、,一直線過交橢圓于兩點,則的周長為   (  )
A.32B.16C.8D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線與橢圓有相同的焦點,則該雙曲線的漸近線方程為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓C1=1(a>b>0)的左、右焦點分別為為,恰是拋物線C2的焦點,點M為C1與C2在第一象限的交點,且|MF2|=
(1)求C1的方程;
(2)平面上的點N滿足,直線l∥MN,且與C1交于A,B兩點,若,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在軸上,離心率為,右焦點到右頂點的距離為
(Ⅰ)求橢圓的標準方程;
(Ⅱ)是否存在與橢圓交于兩點的直線,使得成立?若存在,求出實數(shù)的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知(4,2)是直線l被橢圓所截得的線段的中點,則l的方程是(    )
A.x+2y+8=0
B.x+2y-8=0
C.x-2y-8=0
D.x-2y+8=0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的中心在原點,焦點在軸上,且長軸長為12,離心率為,則橢圓的方程是(  )
A.B.C.D.

查看答案和解析>>

同步練習冊答案