設a∈R,函數(shù)f(x)=
1
x
+a|1-lnx|

(1)當a=1時,求曲線y=f(x)在x=1處的切線方程;
(2)討論f(x)在(0,e)上的單調(diào)性.
考點:利用導數(shù)研究函數(shù)的單調(diào)性,利用導數(shù)研究曲線上某點切線方程
專題:導數(shù)的綜合應用
分析:(1)當a=1時,求出f(x)的表達式,利用導數(shù)的幾何意義即可求曲線y=f(x)在x=1處的切線方程;
(2)求函數(shù)的導數(shù),利用導數(shù)和函數(shù)單調(diào)性之間的關系即可得到結(jié)論.
解答: 解:(1)a=1時,f(x)=
1
x
+|1-lnx|
,x∈(0,e),f(x)=
1
x
+1-lnx

f′(x)=-
1
x2
-
1
x
,f′(1)=-2,f(1)=2
,
則切線方程為y=-2x+4.
(2)x∈(0,e),f(x)=
1
x
+a(1-lnx)
,f′(x)=-
1
x2
-
a
x
=-
1+ax
x2
,
10當a≥0時,x∈(0,e),f'(x)<0恒成立,則f(x)在(0,e)上單調(diào)遞減;
20當-
1
a
≥e時
,即-
1
e
≤a<0
,x∈(0,e),f'(x)>0恒成立,
則f(x)在(0,e)上單調(diào)遞增;
30當0<-
1
a
<e時
,即a<-
1
e
,當x∈(0,-
1
a
)時f′(x)<0
,
f(x)在(0,-
1
a
)上單調(diào)遞減

x∈(-
1
a
,e)時f′(x)>0

f(x)在(-
1
a
,e)上單調(diào)遞增
點評:本題主要考查函數(shù)切線的求解,利用導數(shù)的幾何意義,以及函數(shù)的單調(diào)性和導數(shù)之間的關系是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設當x=θ時,函數(shù)f(x)=2sinx-cosx取得最大值,則cosθ=( 。
A、
5
5
B、
2
5
5
C、-
5
5
D、-
2
5
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點M在橢圓
x2
25
+
y2
9
=1上,MQ垂直于橢圓焦點所在的直線,垂足為Q,并且M為線段PQ的中點,求P點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

盒子中裝有大小相同的2只紅球,4只黑球,n(n≥3)只白球.規(guī)定:一次摸出3只球,如果這3只球是同色的,就獎勵10元,否則罰款2元.某人摸一次球,他獲獎勵10元的概率為p.
(1)當n=4時,
(i)若某人摸一次球,求他獲獎勵10元的概率;
(ii)若有10人參加摸球游戲,每人摸一次,摸后放回,記隨機變量ξ為獲獎勵的人數(shù).求P(ξ>1),和這10人所得總錢數(shù)的期望.(結(jié)果用分數(shù)表示,參考數(shù)據(jù):(
14
15
)10
1
2

(2)記某人三次摸球恰有一次中獎10元的概率為f(p),問當n為何值時,f(p)取得最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=loga(1-x)+loga(x+3)(0<a<1).
(1)求函數(shù)f(x)的定義域;
(2)求函數(shù)f(x)的零點;
(3)若函數(shù)f(x)的最小值為-2,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正項數(shù)列{an}中,a1=1,點(
an
,an+1)(n∈N+)在函數(shù)y=x2+1的圖象上,數(shù)列{bn}的前n項和Sn=2-bn
(1)求數(shù)列{an}和數(shù)列{bn}的通項公式;
(2)設cn=
-1
an+1log2bn+1
,求數(shù)列{cn}的前n項和Tn
(3)若x2-
x
2
<cn對于n∈N+恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,由M到N的電路中有4個元件,分別標為T1,T2,T3,T4,已知每個元件正常工作的概率均為
2
3
,且各元件相互獨立.
(1)求電流能在M與N之間通過的概率;
(2)記隨機變量ξ表示T1,T2,T3,T4這四個元件中正常工作的元件個數(shù),求ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)g(x)=
x
lnx
,f(x)=g(x)-ax(a>0)

(Ⅰ)求函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)(1,+∞)上是減函數(shù),求實數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的三內(nèi)角A,B,C所對的邊分別為a,b,c,a=
15
,b=2,向量
m
=(-1,
3
),
n
=(cosA,sinA),且
m
n
=1.
(1)求角A;
(2)求
1+sin2B
cos2B-sin2B
的值.

查看答案和解析>>

同步練習冊答案