精英家教網 > 高中數學 > 題目詳情

【題目】某少兒游泳隊需對隊員進行限時的仰臥起坐達標測試.已知隊員的測試分數與仰臥起坐

個數之間的關系如下:;測試規(guī)則:每位隊員最多進行三組測試,每組限時1分鐘,當一組測完,測試成績達到60分或以上時,就以此組測試成績作為該隊員的成績,無需再進行后續(xù)的測試,最多進行三組;根據以往的訓練統(tǒng)計,隊員“喵兒”在一分鐘內限時測試的頻率分布直方圖如下:

(1)計算值;

(2)以此樣本的頻率作為概率,求

①在本次達標測試中,“喵兒”得分等于的概率;

②“喵兒”在本次達標測試中可能得分的分布列及數學期望.

【答案】(1);(2)見解析

【解析】

(1)頻率分布直方圖中所有頻率之和為1,由此可求得

(2)①由頻率分布直方圖可得一次測試得分的分布列,三組測試中,“喵兒”得80分為事件A,則“喵兒”可能第一組得80分,或者第二組得80分,或者第三組得80分,由于三組相互獨立,從而可計算概率,②仿照①可計算出三組測試其得分的概率,得分布列,再由期望公式計算出期望.

(1)

(2)由直方圖可知,“喵兒”的得分情況如下:

0

60

80

100

0.1

0.5

0.1

①在本次的三組測試中,“喵兒”得80分為事件A,則“喵兒”可能第一組得80分,或者第二組得80分,或者第三組得80分,則(6分)

,

,

分布列如下:

0

60

80

100

0.001

0.555

數學期望

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設橢圓C:的左、右焦點分別為,上頂點為A,在x軸負半軸上有一點B,滿足為線段的中點,且AB。

(I)求橢圓C的離心率;

(II)若過A、B、三點的圓與直線相切,求橢圓C的方程;

(III)在(I)的條件下,過右焦點作斜率為k的直線與橢圓C交于M,N兩點,在x軸上是否存在點P(m,0)使得以PM,PN為鄰邊的平行四邊形是菱形?如果存在,求出m的取值范圍;如果不存在,說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】己知點A是拋物線的對稱軸與準線的交點,點B為拋物線的焦點,P在拋物線上且滿足,當取最大值時,點P恰好在以A、B為焦點的雙曲線上,則雙曲線的離心率為

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如果l是空間中的一條直線,是空間中的一個平面,判斷下列命題的真假.

1l要么相交,要么不相交;

2)要么l內,要么l外;

3)要么l平行,要么l.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在長方體中,如果把它的12條棱延伸為直線,6個面延展為平面,那么在這12條直線與6個平面中:

1)與直線不平行也不相交的直線有哪幾條?

2)與直線平行的平面有哪幾個?

3)與直線垂直的平面有哪幾個?

4)與平面平行的平面有哪幾個?

5)與平面垂直的平面有哪幾個?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中國已經成為全球最大的電商市場,但是實體店仍然是消費者接觸商品和品牌的重要渠道.某機構隨機抽取了年齡介于10歲到60歲的消費者200人,對他們的主要購物方式進行問卷調查.現(xiàn)對調查對象的年齡分布及主要購物方式進行統(tǒng)計,得到如下圖表:

主要購物方式

年齡階段

網絡平臺購物

實體店購物

總計

40歲以下

75

40歲或40歲以上

55

總計

(1)根據已知條件完成上述列聯(lián)表,并據此資料,能否在犯錯誤的概率不超過的前提下,認為消費者主要的購物方式與年齡有關?

(2)用分層抽樣的方法從通過網絡平臺購物的消費者中隨機抽取8人,然后再從這8名消費者中抽取5名進行答謝.設抽到的消費者中40歲以下的人數為,求的分布列和數學期望.

參考公式:,其中.

臨界值表:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】計算:(1) ;

(2) .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】判斷下列命題中pq的什么條件.(充分不必要條件必要不充分條件,充要條件,既不充分也不必要條件)

1p:數a能被6整除,q:數a能被3整除;

2,;

3有兩個角相等,是正三角形;

4)若,,;

5,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數方程是 (為參數).

(1)將曲線的極坐標方程化為直角坐標方程;

(2)若直線與曲線相交于兩點,且,求直線的傾斜角的值.

查看答案和解析>>

同步練習冊答案