(選作題)定義在(-1,1)上的函數(shù)y=f(x)滿(mǎn)足:對(duì)任意x,y∈(-1,1)都有f(x)+f(y)=f(
x+y
1+xy
)

(1)判斷函數(shù)f(x)的奇偶性,并證明;
(2)如果當(dāng)x∈(-1,0)時(shí),有f(x)>0,求證:f(x)在(-1,1)上是單調(diào)遞減函數(shù);
(3)在(2)的條件下解不等式:f(x+
1
2
)+f(
1
1-x
)>0
(1)f(x)為奇函數(shù).
  令x=y=0,代入f(x)+f(y)=f(
x+y
1+xy
)
有,
  2f(0)=f(0),f(0)=0;
  令y=-x,代入f(x)+f(y)=f(
x+y
1+xy
)
得:
  f(x)+f(-x)=f(0)=0,(xy≠-1,由定義域易知其滿(mǎn)足)
∴f(x)=-f(-x),得證.
(2)設(shè)-1<x1<x2<1,
f(x1)-f(x2)=f(x1)+f(-x2)=f(
x1-x2
1-x1x2
)
,
由題設(shè)知,必有-1<
x1-x2
1-x1x2
<1
又x1-x2<0,由x1,x2∈(-1,1),可得-x1•x2∈(-1,1),所以1-x1•x2>0,
所以-1<
x1-x2
1-x1x2
<0,又x∈(-1,0)時(shí)f(x)>0,
∴f(x1)-f(x2)=f(
x1-x2
1-x1x2
)
>0
∴f(x1)>f(x2
即f(x)在(-1,1)上是減函數(shù);
(3)∵f(x+
1
2
)+f(
1
1-x
)>0
,f(x)為奇函數(shù),
f(x+
1
2
) >f(
1
x-1
)
,函數(shù)y=f(x)定義在(-1,1)上,f(x)在(-1,1)上是單調(diào)遞減函數(shù),
-1<x+
1
2
< 1
-1<
1
x-1
<1
x+
1
2
1
x-1
解得:-
3
2
<x<-1

∴不等式的解集為:{x|-
3
2
<x<-1
}.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(選作題)定義在(-1,1)上的函數(shù)y=f(x)滿(mǎn)足:對(duì)任意x,y∈(-1,1)都有f(x)+f(y)=f(
x+y
1+xy
)

(1)判斷函數(shù)f(x)的奇偶性,并證明;
(2)如果當(dāng)x∈(-1,0)時(shí),有f(x)>0,求證:f(x)在(-1,1)上是單調(diào)遞減函數(shù);
(3)在(2)的條件下解不等式:f(x+
1
2
)+f(
1
1-x
)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年安徽省高三摸底考試?yán)砜茢?shù)學(xué) 題型:解答題

附加題(本大題共兩個(gè)小題,每個(gè)小題10分,滿(mǎn)分 20分,省級(jí)示范性高中要

把該題成績(jī)計(jì)入總分,普通高中學(xué)生選作)

已知,

(1)判斷函數(shù)在區(qū)間(-∞,0)上的單調(diào)性,并用定義證明;

(2)畫(huà)出該函數(shù)在定義域上的圖像.(圖像體現(xiàn)出函數(shù)性質(zhì)即可)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(選作題)定義在(-1,1)上的函數(shù)y=f(x)滿(mǎn)足:對(duì)任意x,y∈(-1,1)都有數(shù)學(xué)公式
(1)判斷函數(shù)f(x)的奇偶性,并證明;
(2)如果當(dāng)x∈(-1,0)時(shí),有f(x)>0,求證:f(x)在(-1,1)上是單調(diào)遞減函數(shù);
(3)在(2)的條件下解不等式:數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年北京市35中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

(選作題)定義在(-1,1)上的函數(shù)y=f(x)滿(mǎn)足:對(duì)任意x,y∈(-1,1)都有
(1)判斷函數(shù)f(x)的奇偶性,并證明;
(2)如果當(dāng)x∈(-1,0)時(shí),有f(x)>0,求證:f(x)在(-1,1)上是單調(diào)遞減函數(shù);
(3)在(2)的條件下解不等式:

查看答案和解析>>

同步練習(xí)冊(cè)答案