【題目】已知函數(shù)).

(1)討論函數(shù)的單調(diào)性;

(2)若,討論函數(shù)在區(qū)間上的最值.

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析.

【解析】

1)求出,分三種情況討論的范圍,在定義域內(nèi),分別由求出的范圍,可得增區(qū)間;由求出的范圍, 可得減區(qū)間;(2)由(1)得,當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,分四種情況討論,分別利用導(dǎo)數(shù)判斷函數(shù)在上的單調(diào)性,利用單調(diào)性求出極值,與的值比較大小,進(jìn)而可得結(jié)果.

(1)函數(shù)的定義域是.

.

當(dāng)時(shí),令,得;令,得,

所以函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減;

當(dāng)時(shí),令,得;令,得,

所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.

(2)由(1)得,當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.

①當(dāng),即時(shí),函數(shù)在區(qū)間上單調(diào)遞減,所以函數(shù)上的最大值為,最小值為;

②當(dāng),即時(shí),函數(shù)在區(qū)間上單調(diào)遞增,所以函數(shù)上的最大值為,最小值為;

③當(dāng),即時(shí),函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,所以函數(shù)上的最小值為.

最大值為中的較大者.下面比較的大小:

因?yàn)?/span> ,

,得,化簡(jiǎn)得,

解得 .因?yàn)?/span>,且

所以.

所以當(dāng)時(shí),,函數(shù)上的最大值為

當(dāng)時(shí),,函數(shù)上的最大值為;

當(dāng)時(shí),,函數(shù)上的最大值為.

綜上,當(dāng)時(shí),函數(shù)上的最大值為,最小值為

當(dāng)時(shí),函數(shù)上的最大值為;最小值為

當(dāng)時(shí),函數(shù)上的最大值為,最小值為

當(dāng)時(shí),函數(shù)上的最大值為,最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)命題p:實(shí)數(shù)滿(mǎn)足不等式

命題q:關(guān)于不等式對(duì)任意的恒成立.

1)若命題為真命題,求實(shí)數(shù)的取值范圍;

2)若“為假命題,為真命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面幾種推理中是演繹推理的為( )

A. 由金、銀、銅、鐵可導(dǎo)電,猜想:金屬都可導(dǎo)電

B. 猜想數(shù)列的通項(xiàng)公式為

C. 半徑為的圓的面積,則單位圓的面積

D. 由平面直角坐標(biāo)系中圓的方程為,推測(cè)空間直角坐標(biāo)系中球的方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線經(jīng)過(guò)點(diǎn),過(guò)點(diǎn)的直線與拋物線有兩個(gè)不同的交點(diǎn)、.

1)求直線的斜率的取值范圍;

2)設(shè)為原點(diǎn),直線軸于,直線軸于,,,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)濟(jì)訂貨批量模型,是目前大多數(shù)工廠、企業(yè)等最常采用的訂貨方式,即某種物資在單位時(shí)間的需求量為某常數(shù),經(jīng)過(guò)某段時(shí)間后,存儲(chǔ)量消耗下降到零,此時(shí)開(kāi)始訂貨并隨即到貨,然后開(kāi)始下一個(gè)存儲(chǔ)周期,該模型適用于整批間隔進(jìn)貨、不允許缺貨的存儲(chǔ)問(wèn)題,具體如下:年存儲(chǔ)成本費(fèi)(元)關(guān)于每次訂貨(單位)的函數(shù)關(guān)系,其中為年需求量,為每單位物資的年存儲(chǔ)費(fèi),為每次訂貨費(fèi). 某化工廠需用甲醇作為原料,年需求量為6000噸,每噸存儲(chǔ)費(fèi)為120元/年,每次訂貨費(fèi)為2500元.

(1)若該化工廠每次訂購(gòu)300噸甲醇,求年存儲(chǔ)成本費(fèi);

(2)每次需訂購(gòu)多少?lài)嵓状,可使該化工廠年存儲(chǔ)成本費(fèi)最少?最少費(fèi)用為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方體ABCDA1B1C1D1中,ABBC4,BB12,點(diǎn)E、F、M分別為C1D1,A1D1,B1C1的中點(diǎn),過(guò)點(diǎn)M的平面α與平面DEF平行,且與長(zhǎng)方體的面相交,交線圍成一個(gè)幾何圖形.

1)在圖1中,畫(huà)出這個(gè)幾何圖形,并求這個(gè)幾何圖形的面積(不必說(shuō)明畫(huà)法與理由)

2)在圖2中,求證:D1B⊥平面DEF

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,其中為常數(shù).

1)證明:

2)是否存在,使得為等差數(shù)列?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)是定義在R 且周期為1的函數(shù),在區(qū)間上, 其中集合D=,則方程f(x)-lgx=0的解的個(gè)數(shù)是____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若正項(xiàng)數(shù)列滿(mǎn)足:,則稱(chēng)此數(shù)列為“比差等數(shù)列”.

1)試寫(xiě)出一個(gè)“比差等數(shù)列”的前項(xiàng);

2)設(shè)數(shù)列是一個(gè)“比差等數(shù)列”,問(wèn)是否存在最小值,如存在,求出最小值;如不存在,請(qǐng)說(shuō)明理由;

3)已知數(shù)列是一個(gè)“比差等數(shù)列”,為其前項(xiàng)的和,試證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案