【題目】如圖,在四棱錐A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=

(Ⅰ)證明:AC⊥平面BCDE;
(Ⅱ)求直線AE與平面ABC所成的角的正切值.

【答案】解:(Ⅰ)如圖所示,取DC的中點(diǎn)F,連接BF,則DF= DC=1=BE,

∵∠CDE=∠BED=90°,∴BE∥DF,

∴四邊形BEDF是矩形,

∴BF⊥DC,BF=ED=1,

在Rt△BCF中,BC= =

在△ACB中,∵AB=2,BC=AC= ,

∴BC2+AC2=AB2,

∴AC⊥BC,

又平面ABC⊥平面BCDE,∴AC⊥平面BCDE.

(Ⅱ)過點(diǎn)E作EM⊥CB交CB的延長(zhǎng)線于點(diǎn)M,連接AM.

又平面ABC⊥平面BCDE,∴EM⊥平面ACB.

∴∠EAM是直線AE與平面ABC所成的角.

在Rt△BEM中,EB=1,∠EBM=45°.

∴EM= =MB.

在Rt△ACM中, = =

在Rt△AEM中, = =


【解析】91)根據(jù)勾股定理的逆定理可知AC⊥BC,由已知平面ABC⊥平面BCDE并且兩平面相交于BC,根據(jù)直線和平面垂直的判定定理可知AC⊥平面BCDE。(2)根據(jù)題意作出輔助線,可證明EM⊥平面ACB進(jìn)而可得∠EAM是直線AE與平面ABC所成的角,根據(jù)幾何關(guān)系可求出tan的值。
【考點(diǎn)精析】本題主要考查了直線與平面垂直的判定和空間角的異面直線所成的角的相關(guān)知識(shí)點(diǎn),需要掌握一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想;已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列不等式:1+ + >1,1+ + +…+ ,1+ + +…+ >2…,則按此規(guī)律可猜想第n個(gè)不等式為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若

(1)求的值,并寫出函數(shù)的最小正周期(不需證明);

(2)是否存在正整數(shù),使得函數(shù)在區(qū)間內(nèi)恰有個(gè)零點(diǎn)?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是定義在上的奇函數(shù),當(dāng)時(shí), .

1)求的解析式;

(2)解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖①;B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖②.(注:利潤(rùn)和投資單位:萬元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù)關(guān)系式;

(2)已知該企業(yè)已籌集到18萬元資金,并將全部投入AB兩種產(chǎn)品的生產(chǎn),怎樣分配這18萬元投資,才能使該企業(yè)獲得最大利潤(rùn)?其最大利潤(rùn)約為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是菱形,平面,的中點(diǎn).

(1)求證:平面平面

(2)棱上是否存在一點(diǎn),使得平面?若存在,確定的位置并加以證明;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,ccosA+ csinA﹣b﹣a=0.
(Ⅰ)求C;
(Ⅱ)若c=1,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,a∈R,若存在實(shí)數(shù)b,使函數(shù)g(x)=f(x)﹣b有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】利民中學(xué)為了了解該校高一年級(jí)學(xué)生的數(shù)學(xué)成績(jī),從高一年級(jí)期中考試成績(jī)中抽出100名學(xué)生的成績(jī),由成績(jī)得到如下的頻率分布直方圖.

根據(jù)以上頻率分布直方圖,回答下列問題:

(1)求這100名學(xué)生成績(jī)的及格率;(大于等于60分為及格)

(2)試比較這100名學(xué)生的平均成績(jī)和中位數(shù)的大小.(精確到0.1)

查看答案和解析>>

同步練習(xí)冊(cè)答案