分析 (1)利用余弦定理求出AC,根據(jù)勾股定理得出AB⊥AC,即CD⊥AC,由PA⊥平面ABCDE得出CD⊥PA,故CD⊥平面PAC,從而得出平面PAC⊥平面PCD;
(2)做AM⊥PC即可證明AM⊥平面PCD,又AB∥CD,故B到平面PCD的距離h=AM,求出AM,BP的值即可得出直線PB與平面PCD所成角的正弦值.
解答 (1)證明:在△ABC中,∵∠ABC=45°,BC=4,AB=2$\sqrt{2}$,
∴AC2=AB2+BC2-2AB•BC•cos45°=8,
∴AC=2$\sqrt{2}$,∴BC2=AB2+AC2,
∴BA⊥AC.
又PA⊥平面ABCDE,AB∥CD,CD?平面ABCDE,
∴CD⊥PA,CD⊥AC,
又PA?平面PAC,AC?平面PAC,PA∩AC=A,
∴CD⊥平面PAC,又CD?平面PCD,
∴平面PCD⊥平面PAC.
(2)∵AB=AP=AC=2$\sqrt{2}$,
∴PB=PC=$\sqrt{2}$AB=4,
過A做AM⊥PC,則AM=$\frac{AP•AC}{PC}$=2,
∵平面APC⊥平面PCD,平面APC∩平面PCD=PC,AM⊥PC,AM?平面APC,
∴AM⊥平面PCD,
即A到平面PCD的距離為AM=2,
∵AB∥CD,
∴B到平面PCD的距離h=AM=2,
設(shè)直線PB與平面PCD所成角為θ,
∴sinθ=$\frac{h}{BP}$=$\frac{1}{2}$,∴θ=30°.
點(diǎn)評(píng) 本題考查了面面垂直的判定,線面角的計(jì)算,也可利用空間向量求出,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6+12$\sqrt{2}$ | B. | 16+12$\sqrt{2}$ | C. | 6+12$\sqrt{3}$ | D. | 16+12$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{3}$+4 | B. | 4$\sqrt{3}$ | C. | 8 | D. | 2$\sqrt{3}$+2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com