【題目】中國(guó)政府實(shí)施“互聯(lián)網(wǎng)+”戰(zhàn)略以來(lái),手機(jī)作為客戶端越來(lái)越為人們所青睞,通過(guò)手機(jī)實(shí)現(xiàn)衣食住行消費(fèi)已經(jīng)成為一種主要的消費(fèi)方式,“一機(jī)在手,走遍天下”的時(shí)代已經(jīng)到來(lái)。在某著名的夜市,隨機(jī)調(diào)查了100名顧客購(gòu)物時(shí)使用手機(jī)支付的情況,得到如下的列聯(lián)表,已知其中從使用手機(jī)支付的人群中隨機(jī)抽取1人,抽到青年的概率為.
(1)根據(jù)已知條件完成列聯(lián)表,并根據(jù)此資料判斷是否有的把握認(rèn)為“市場(chǎng)購(gòu)物用手機(jī)支付與年齡有關(guān)”?
(2)現(xiàn)采用分層抽樣從這100名顧客中按照“使用手機(jī)支付”和“不使用手機(jī)支付”中抽取得到一個(gè)容量為5的樣本,設(shè)事件為“從這個(gè)樣本中任選2人,這2人中至少有1人是不使用手機(jī)支付的”,求事件發(fā)生的概率?
列聯(lián)表
青年 | 中老年 | 合計(jì) | |
使用手機(jī)支付 | 60 | ||
不使用手機(jī)支付 | 24 | ||
合計(jì) | 100 |
附:
【答案】(1)見(jiàn)解析;(2).
【解析】試題分析:(1)由已知求得使用手機(jī)支付的人群中的青年的人數(shù)和用手機(jī)支付的人群中的中老年的人數(shù),填寫(xiě)列聯(lián)表即可,根據(jù)列聯(lián)表求得觀測(cè)值與參考值對(duì)比即可得結(jié)論;(2)采用分層抽樣,分別求得使用手機(jī)支付的人中有3人,不使用手機(jī)支付的人有2人,用列舉法計(jì)算基本事件,即可得所求的概率值.
試題解析:(1)∵從使用手機(jī)支付的人群中隨機(jī)抽取1人,抽到青年的概率為
∴使用手機(jī)支付的人群中的青年的人數(shù)為人,則使用手機(jī)支付的人群中的中老年的人數(shù)為人,所以列聯(lián)表為:
青年 | 中老年 | 合計(jì) | |
使用手機(jī)支付 | 42 | 18 | 60 |
不使用手機(jī)支付 | 16 | 24 | 40 |
合計(jì) | 58 | 42 | 100 |
∴的觀測(cè)值
∵
∴有的把握認(rèn)為“市場(chǎng)購(gòu)物用手機(jī)支付與年齡有關(guān)”.
(2) 這100名顧客中采用分層抽樣從“使用手機(jī)支付”和“不使用手機(jī)支付”中抽取得到一個(gè)容量為5的樣本中:使用手機(jī)支付的人有人,記編號(hào)為1,2,3;不使用手機(jī)支付的人有2人,記編號(hào)為a,b, 則從這個(gè)樣本中任選2人有(1,2)(1,3)(1,a)(1,b)(2,3)(2,a)(2,b)(3,a)(3,b)(a,b)共10種,其中至少有1人是不使用手機(jī)支付的(1,a)(1,b) (2a)(2,b)(3,a)(3,b)(a,b)共7種.
故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩(shī)詞知識(shí)競(jìng)賽為主的《中國(guó)詩(shī)詞大會(huì)》火爆熒屏.將中學(xué)組和大學(xué)組的參賽選手按成績(jī)分為優(yōu)秀、良好、一般三個(gè)等級(jí),隨機(jī)從中抽取了100名選手進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的選手等級(jí)人數(shù)的條形圖.
(1)若將一般等級(jí)和良好等級(jí)合稱為合格等級(jí),根據(jù)已知條件完成下面的列聯(lián)表,據(jù)此資料你是否有95%的把握認(rèn)為選手成績(jī)“優(yōu)秀”與文化程度有關(guān)?
優(yōu)秀 | 合格 | 合計(jì) | |
大學(xué)組 | |||
中學(xué)組 | |||
合計(jì) |
注:,其中.
0.10 | 0.05 | 0.005 | |
2.706 | 3.841 | 7.879 |
(2)若參賽選手共6萬(wàn)人,用頻率估計(jì)概率,試估計(jì)其中優(yōu)秀等級(jí)的選手人數(shù).
(3)在優(yōu)秀等級(jí)的選手中取6名,依次編號(hào)為1,2,3,4,5,6.在良好等級(jí)的選手中取6名,依次編號(hào)為1,2,3,4,5,6,在選出的6名優(yōu)秀等級(jí)的選手中任取一名,記其編號(hào)為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,是平行四邊形,,, ,,,分別是,的中點(diǎn).
(Ⅰ)證明:平面平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右頂點(diǎn)為,上頂點(diǎn)為,離心率, 為坐標(biāo)原點(diǎn),圓與直線相切.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知四邊形內(nèi)接于橢圓.記直線的斜率分別為,試問(wèn)是否為定值?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2018湖北七市(州)教研協(xié)作體3月高三聯(lián)考】已知橢圓: 的左頂點(diǎn)為,上頂點(diǎn)為,直線與直線垂直,垂足為點(diǎn),且點(diǎn)是線段的中點(diǎn).
(I)求橢圓的方程;
(II)如圖,若直線: 與橢圓交于, 兩點(diǎn),點(diǎn)在橢圓上,且四邊形為平行四邊形,求證:四邊形的面積為定值.
【答案】(I);(II)
【解析】試題分析:(1)根據(jù)題意可得, 故斜率為,由直線與直線垂直,可得,因?yàn)辄c(diǎn)是線段的中點(diǎn),∴點(diǎn)的坐標(biāo)是,
代入直線得,連立方程即可得, ;(2)∵四邊形為平行四邊形,∴,設(shè), , ,∴ ,得,將點(diǎn)坐標(biāo)代入橢圓方程得,
點(diǎn)到直線的距離為,利用弦長(zhǎng)公式得EF,則平行四邊形的面積為
.
解析:(1)由題意知,橢圓的左頂點(diǎn),上頂點(diǎn),直線的斜率,
得,
因?yàn)辄c(diǎn)是線段的中點(diǎn),∴點(diǎn)的坐標(biāo)是,
由點(diǎn)在直線上,∴,且,
解得, ,
∴橢圓的方程為.
(2)設(shè), , ,
將代入消去并整理得 ,
則, ,
,
∵四邊形為平行四邊形,∴ ,
得,將點(diǎn)坐標(biāo)代入橢圓方程得,
點(diǎn)到直線的距離為, ,
∴平行四邊形的面積為
.
故平行四邊形的面積為定值.
【題型】解答題
【結(jié)束】
21
【題目】已知函數(shù), .
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),求證:函數(shù)有兩個(gè)不相等的零點(diǎn), ,且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某石化集團(tuán)獲得了某地深海油田區(qū)塊的開(kāi)采權(quán).集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分幾口井.取得了地質(zhì)資料,進(jìn)入全面勘探時(shí)期后.集團(tuán)按網(wǎng)絡(luò)點(diǎn)來(lái)布置井位進(jìn)行全面勘探.由于勘探一口井的費(fèi)用很高.如果新設(shè)計(jì)的井位與原有井位重合或接近.便利用舊并的地質(zhì)資料.不必打這日新并,以節(jié)約勘探費(fèi)與用,勘探初期數(shù)據(jù)資料見(jiàn)如表:
井號(hào) | ||||||
坐標(biāo) | ||||||
鉆探深度 | ||||||
出油量 |
(參考公式和計(jì)算結(jié)果:,,,).
()號(hào)舊井位置線性分布,借助前組數(shù)據(jù)求得回歸直線方程為,求的值.
()現(xiàn)準(zhǔn)備勘探新井,若通過(guò),,,號(hào)井計(jì)算出的,的值(,精確到)相比于()中的,,值之差不超過(guò).則使用位置最接近的已有舊井.否則在新位置打開(kāi),請(qǐng)判斷可否使用舊井?
()設(shè)出油量與勘探深度的比值不低于的勘探井稱為優(yōu)質(zhì)井,那么在原有口井中任意勘探口井,求勘探優(yōu)質(zhì)井?dāng)?shù)的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸正方向建立平面直角坐標(biāo)系,曲線的直角坐標(biāo)方程是(為參數(shù)).
(Ⅰ)將曲線的參數(shù)方程化為普通方程;
(Ⅱ)求曲線與曲線交點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知是直角梯形, , , 平面.
(1)證明: ;
(2)若是的中點(diǎn),證明: 平面;
(3)若,求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com