設(shè)f(x)=
sinπx(x<
1
2
)
f(x-1)+1(x≥
1
2
)
,求f(
1
4
)+f(
7
6
)的值.
考點(diǎn):分段函數(shù)的應(yīng)用
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:利用分段函數(shù),分別代入計(jì)算,即可得出結(jié)論.
解答: 解:∵
1
4
1
2
,∴f(
1
4
)=sin
π
4
=
2
2
;
7
6
1
2
,∴f(
7
6
)=f(
1
6
)+1=sin
π
6
+1=
3
2

∴f(
1
4
)+f(
7
6
)=
3+
2
2
點(diǎn)評(píng):本題考查分段函數(shù)的應(yīng)用,考查學(xué)生的計(jì)算能力,正確運(yùn)用分段函數(shù)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在兩個(gè)變量y與x的回歸模型中,分別選擇了4個(gè)不同的模型,它們的相關(guān)指數(shù)R2如下,其中擬合效果最好的模型是(  )
A、模型1的相關(guān)指數(shù)R2為0.96
B、模型2的相關(guān)指數(shù)R2為0.90
C、模型3的相關(guān)指數(shù)R2為0.61
D、模型4的相關(guān)指數(shù)R2為0.23

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
-4x2+4x   (0≤x<1)
log2014x  (x>1)
,若a,b,c互不相等,且f(a)=f(b)=f(c),則a+b+c的取值范圍是( 。
A、(2,2014)
B、(2,2015)
C、(3,2014)
D、(3,2015)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在(0,+∞)上的單調(diào)函數(shù),且對(duì)任意的x∈(0,+∞)都有f(f(x)-
4
x
)=4,則f(4)=(  )
A、2
B、3
C、4
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列不等式正確的是( 。
A、若a>b,則a•c>b•c
B、若a•c2>b•c2,則a>b
C、若a>b,則
1
a
1
b
D、若a>b,則a•c2>b•c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-2ax2+x+1,
(1)若函數(shù)f(x)在點(diǎn)(1,f(1))處的切線的斜率為4,求實(shí)數(shù)a的值;
(2)若函數(shù)g(x)=f′(x)在區(qū)間(1,2)上存在零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-x3+x2+b,g(x)=alnx.
(Ⅰ)若f(x)在x∈[
1
2
,1)上的最大值為
3
8
,求實(shí)數(shù)b的值;
(Ⅱ)若對(duì)任意x∈[1,e],都有g(shù)(x)≥-x2+(a+2)x恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:y2=x.命題p:直線l1:y=kx+1與拋物線C有公共點(diǎn).命題q:直線l2:y=k(x-
1
4
)被拋物線C所截得的線段長(zhǎng)大于2.若p∧q為假,p∨q為真,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在棱柱ABCD-A1B1C1D1的底面是菱形,且AA1⊥面ABCD,∠DAB=60°,AD=AA1=1,F(xiàn)為棱AA1的中點(diǎn),M為線段BD1的中點(diǎn).
(1)求證:平面D1FB⊥平面BDD1B1
(2)求三棱錐D1-BDF的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案