【題目】函數f(x)= + 的定義域為(用集合或區(qū)間表示).
【答案】[﹣1,1)∪(1,2)∪(2,+∞)
【解析】解:由 ,解得﹣1≤x<1或1<x<2或x>2.∴函數f(x)= + 的定義域為[﹣1,1)∪(1,2)∪(2,+∞).
所以答案是:[﹣1,1)∪(1,2)∪(2,+∞).
【考點精析】解答此題的關鍵在于理解函數的定義域及其求法的相關知識,掌握求函數的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數;②是分式函數時,定義域是使分母不為零的一切實數;③是偶次根式時,定義域是使被開方式為非負值時的實數的集合;④對數函數的真數大于零,當對數或指數函數的底數中含變量時,底數須大于零且不等于1,零(負)指數冪的底數不能為零.
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)某企業(yè)生產的一批產品中有一、二、三等品及次品共四個等級,1件不同等級產品的利潤(單位:元)如表1,從這批產品中隨機抽取出1件產品,該件產品為不同等級的概率如表2.
等級 | 一等品 | 二等品 | 三等品 | 次品 |
| ||||
等級 | 一等品 | 二等品 | 三等品 | 次品 |
利潤 |
|
表1 表2
若從這批產品中隨機抽取出的1件產品的平均利潤(即數學期望)為元.
(1) 設隨機抽取1件產品的利潤為隨機變量 ,寫出的分布列并求出的值;
(2) 從這批產品中隨機取出3件產品,求這3件產品的總利潤不低于17元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,.
(1)若,求函數的圖象在處的切線方程;
(2)若,試討論方程的實數解的個數;
(3)當時,若對于任意的,都存在,使得,求滿足條件的正整數的取值的集合.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】三棱錐S﹣ABC中,∠SBA=∠SCA=90°,△ABC是斜邊AB=a的等腰直角三角形,則以下結論中: ①異面直線SB與AC所成的角為90°;
②直線SB⊥平面ABC;
③面SBC⊥面SAC;
④點C到平面SAB的距離是 .
其中正確結論的序號是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為貫徹落實教育部6部門《關于加快發(fā)展青少年校園足球的實施意見》,全面提高我市中學生的體質健康水平,培養(yǎng)拼搏意識和團隊精神,普及足球知識和技能,市教體局決定舉行春季校園足球聯(lián)賽.為迎接此次聯(lián)賽,甲中學選拔了20名學生組成集訓隊,現(xiàn)統(tǒng)計了這20名學生的身高,記錄入如表:(設ξ為隨機變量)
身高(cm) | 168 | 174 | 175 | 176 | 178 | 182 | 185 | 188 |
人數 | 1 | 2 | 4 | 3 | 5 | 1 | 3 | 1 |
(1)請計算這20名學生的身高的中位數、眾數,并補充完成下面的莖葉圖;
(2)身高為185cm和188cm的四名學生分別記為A,B,C,D,現(xiàn)從這四名學生選2名擔任正副門將,請利用列舉法列出所有可能情況,并求學生A入選門將的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了調查觀眾對某電視劇的喜愛程度,某電視臺在甲乙兩地隨機抽取了8名觀眾做問卷調查,得分結果如圖所示:
(1)計算甲地被抽取的觀眾問卷得分的中位數和乙地被抽取的觀眾問卷得分的平均數;
(2)用頻率估計概率,若從乙地的所有觀眾中再隨機抽取4人進行問卷調查,記問卷分數不低于80分的人數為,求的分布列與期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過直線x=﹣2上的動點P作拋物線y2=4x的兩條切線PA,PB,其中A,B為切點.
(1)若切線PA,PB的斜率分別為k1 , k2 , 求證:k1k2為定值;
(2)求證:直線AB恒過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖示:半圓O的直徑為2,A為直徑延長線上的一點,OA=2,B為半圓上任意一
點,以AB為一邊作等邊三角形ABC.則四邊形OACB的面積最大值是 .
查看答案和解析>>