【題目】如圖,已知四棱錐,底面為菱形,,,平面分別是的中點。

(1)證明:;

(2)若上的動點,與平面所成最大角的正切值為,求二面角的余弦值。

【答案】(1)見解析;(2)

【解析】

1)證明,利用平面即可證得,問題得證。

2)過點于點,過點于點,連接.當(dāng)垂直時,與平面所成最大角,利用該最大角的正切值為即可求得,證明就是二面角的一個平面角,解即可。

1)因為底面為菱形,

所以為等邊三角形,又中點

所以,又

所以

因為平面,平面

所以,又

所以平面

2)過點于點,過點于點,連接

當(dāng)垂直時,與平面所成最大角.

由(1)得,此時.所以就是與平面所成的角.

中,由題意可得:,

所以.

設(shè),在中由等面積法得:

解得:,所以

因為平面,平面

所以平面平面,

又平面平面,,平面

所以平面,又平面

所以,又,

所以平面,

所以

所以就是二面角的一個平面角

因為的中點,且

所以,又

所以

中,求得:,,

可得:,即:,解得:

所以

所以

所以二面角的余弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓經(jīng)過點,且圓心在直線.

1)求圓的方程;

2)過點的直線與圓交于兩點,問在直線上是否存在定點,使得恒成立?若存在,請求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=sin(ωx﹣ )+sin(ωx﹣ ),其中0<ω<3,已知f( )=0.(12分)
(Ⅰ)求ω;
(Ⅱ)將函數(shù)y=f(x)的圖象上各點的橫坐標(biāo)伸長為原來的2倍(縱坐標(biāo)不變),再將得到的圖象向左平移 個單位,得到函數(shù)y=g(x)的圖象,求g(x)在[﹣ , ]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)實數(shù)滿足約束條件,的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知sin(A+C)=8sin2
(Ⅰ)求cosB;
(Ⅱ)若a+c=6,△ABC面積為2,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+2cosx,g(x)=ex(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然對數(shù)的底數(shù).(13分)
(Ⅰ)求曲線y=f(x)在點(π,f(π))處的切線方程;
(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),討論h(x)的單調(diào)性并判斷有無極值,有極值時求出極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),曲線通過點,且在點處的切線垂直于軸.

(1)用分別表示;

(2)當(dāng)取得最小值時,求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠今年1月、2月、3月生產(chǎn)某產(chǎn)品分別為1萬件、1.2萬件、1.3萬件,為了估計以后每月的產(chǎn)量,以這三個月的產(chǎn)量為依據(jù),用一個函數(shù)模擬該產(chǎn)品的月產(chǎn)量,與月份的關(guān)系,模擬函數(shù)可以選用二次函數(shù)或函數(shù)、、為常數(shù))已知四月份該產(chǎn)品的產(chǎn)量為1.37萬件,請問用以上哪個函數(shù)作模擬函數(shù)較好?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,,是經(jīng)過小城的東西方向與南北方向的兩條公路,小城位于小城的東北方向,直線距離.現(xiàn)規(guī)劃經(jīng)過小城修建公路(,分別在上),與,圍成三角形區(qū)域.

(1)設(shè),,求三角形區(qū)域周長的函數(shù)解析式;

(2)現(xiàn)計劃開發(fā)周長最短的三角形區(qū)域,求該開發(fā)區(qū)域的面積.

查看答案和解析>>

同步練習(xí)冊答案