【題目】已知sinx+cosx=1,則(sinx)2018+(cosx)2018= .
【答案】1
【解析】解:法一:∵sinx+cosx= sin(x+ )=1,
∴sin(x+ )= ,
∴x+ =2kπ+ 或x+ =2kπ+ ,k∈Z.
∴x=2kπ或x=2kπ+ .k∈Z
當(dāng)x=2kπ,cosx=1,sinx=0,
∴(sinx)2018+(cosx)2018=0+1=1;
當(dāng)x=2kπ+ ,cosx=0,sinx=1,
∴(sinx)2018+(cosx)2018=1+0=1.
綜上所述,(sinx)2018+(cosx)2018的值為1.
法二:∵sinx+cosx=1,
∴兩端平方,求得:sinxcosx=0,
又∵sinx+cosx=1,
∴cosx=1,sinx=0,此時:(sinx)2018+(cosx)2018=0+1=1;
或cosx=0,sinx=1,此時:(sinx)2018+(cosx)2018=1+0=1.
綜上所述,(sinx)2018+(cosx)2018的值為1.
所以答案是:1.
【考點精析】通過靈活運用同角三角函數(shù)基本關(guān)系的運用,掌握同角三角函數(shù)的基本關(guān)系:;;(3) 倒數(shù)關(guān)系:即可以解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知⊙和點.過作⊙的兩條切線,切點分別為且直線的方程為.
(1)求⊙的方程;
(2)設(shè)為⊙上任一點,過點向⊙引切線,切點為, 試探究:平面內(nèi)是否存在一定點,使得為定值?若存在,請舉出一例,并指出相應(yīng)的定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】運行如圖的程序,如果輸入的m,n的值分別是24和15,記錄輸出的i和m的值.在平面直角坐標(biāo)系xOy中,已知點A(i﹣4,m),圓C的圓心在直線l:y=2x﹣4上.
(1)若圓C的半徑為1,且圓心C在直線y=x﹣1上,過點A作圓C的切線,求切線的方程;
(2)若圓C上存在點M,使∠OMA=90°,求圓C的半徑r的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直角梯形中, , , , , ,如圖1所示,將沿折起到的位置,如圖2所示.
(1)當(dāng)平面平面時,求三棱錐的體積;
(2)在圖2中, 為的中點,若線段,且平面,求線段的長;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有兩個命題:p:關(guān)于x的不等式x2+2x-4-a≥0對一切x∈R恒成立;q:已知a≠0,a≠±1,函數(shù)y=-|a|x在R上是減函數(shù),若p∧q為假命題,p∨q為真命題,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,F1,F2分別是橢圓C:的左、右焦點,A是橢圓C的頂點,B是直線AF2與橢圓C的另一個交點,∠F1AF2=60°.
(1)求橢圓C的離心率;
(2)已知△AF1B的面積為40,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(cos x,sin x), =(cos x,﹣sin x),且x∈[0, ].求:
(1)及 ;
(2)若f(x)= ﹣2λ 的最小值是﹣ ,求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}是由正數(shù)組成的等比數(shù)列,公比q=2,且a1a2a3…a30=230 , 那么a3a6a9…a30等于( )
A.210
B.220
C.216
D.215
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com