.已知橢圓與雙曲線有相同的焦點(diǎn),則橢圓的離心率為      (   )
A.B.C.D.
A
本題考查橢圓和雙曲線的幾何性質(zhì)
,則橢圓的焦點(diǎn)為
,則,所以,所以雙曲線的焦點(diǎn)為
由題意橢圓與雙曲線有相同的焦點(diǎn),則
整理得
所以在橢圓所以,即
所以,所以,即
故正確答案為A
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓過點(diǎn),且離心率為.
(1)求橢圓的方程;
(2)為橢圓的左右頂點(diǎn),直線軸交于點(diǎn),點(diǎn)是橢圓上異于的動(dòng)點(diǎn),直線分別交直線兩點(diǎn).證明:當(dāng)點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),恒為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓C:(a>b>0)的離心率為,其左、右焦點(diǎn)分別是F1、F2,點(diǎn)P是坐標(biāo)平面內(nèi)的一點(diǎn),且|OP|=,·(點(diǎn)O為坐標(biāo)原點(diǎn)).
(Ⅰ)求橢圓C的方程;
(Ⅱ)直線y=x與橢圓C在第一象限交于A點(diǎn),若橢圓C上兩點(diǎn)M、N使
λ,λ∈(0,2)求△OMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


(本小題滿分12分)
已知橢圓的一個(gè)焦點(diǎn)為F1(-1,0),對(duì)應(yīng)的準(zhǔn)線方程為,且離心率e滿足:成等差數(shù)列。

(1)求橢圓C方程;
(2)如圖,拋物線的一段與橢圓C的一段圍成封閉圖形,點(diǎn)N(1,0)在x軸上,又A、B兩點(diǎn)分別在拋物線及橢圓上,且AB//x軸,求△NAB的周長(zhǎng)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓的離心率是 則雙曲線的離心率是()
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩點(diǎn)、,且的等差中項(xiàng),則動(dòng)點(diǎn)的軌跡方程是(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知F是橢圓C的一個(gè)焦點(diǎn),且橢圓C上的點(diǎn)到點(diǎn)F的最大距離為8
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知圓O:,直線. 求當(dāng)點(diǎn)在橢圓C上運(yùn)動(dòng)時(shí),直線 被圓O所截得的弦長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.       已知定圓圓心為A;動(dòng)圓M過點(diǎn)且與圓A相切,圓心M 的坐標(biāo)為,它的軌跡記為C。
(1)求曲線C的方程;
(2)過一點(diǎn)N(1,0)作兩條互相垂直的直線與曲線C分別交于點(diǎn)P和Q,試問這兩條直線能否使得向量互相垂直?若存在,求出點(diǎn)P,Q的橫坐標(biāo),若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓及直線.
(1)當(dāng)直線與橢圓有公共點(diǎn)時(shí),求實(shí)數(shù)的取值范圍.
(2)求被橢圓截得的最長(zhǎng)弦所在直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案