【題目】如圖,已知橢圓的長軸長為4,離心率為,過點(diǎn)的直線l交橢圓于兩點(diǎn),與x軸交于P點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn)為,直線交軸于點(diǎn).
(1)求橢圓方程;
(2)求證:為定值.
【答案】(1)(2)見解析
【解析】
(1)根據(jù)題意,由橢圓的長軸長可得a的值,結(jié)合橢圓的離心率公式可得c的值,結(jié)合橢圓的幾何性質(zhì)可得b的值,將a、b的值代入橢圓的方程即可得答案;
(2)設(shè)直線PQ的方程為,可得P的坐標(biāo),設(shè),,則,由兩點(diǎn)式寫出BC直線方程,得到Q點(diǎn)坐標(biāo)為
直線方程將直線與橢圓的方程聯(lián)立,可得,由根與系數(shù)的關(guān)系分析可得,用k表示Q點(diǎn)坐標(biāo)為,化簡即可得答案.
(1)由題意得解得
所以橢圓方程為
(2)直線方程為,則的坐標(biāo)為
設(shè),,則,
直線方程為,令,得的橫坐標(biāo)為①
又得,得
代入①得
得
∴為常數(shù)4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們知道一次函數(shù)、二次函數(shù)的圖像都是連續(xù)不斷的曲線,事實(shí)上,多項(xiàng)式函數(shù)的圖像都是如此.
(1)設(shè),且,若還有,求證:;
(2)設(shè)一個多項(xiàng)式函數(shù)有奇次項(xiàng)(),求證:總能通過只調(diào)整的系數(shù),使得調(diào)整后的多項(xiàng)式一定有零點(diǎn);
(3)現(xiàn)有未知數(shù)為的多項(xiàng)式方程(其中實(shí)數(shù)待定),甲、乙兩人進(jìn)行一個游戲:由甲開始交替確定中的一個數(shù)(每次只能去確定剩余還未定的數(shù)),當(dāng)甲確定最后一個數(shù)后,若方程由實(shí)數(shù)解,則乙勝,反之甲勝,問:乙有必勝的策略嗎?若有,請給出策略并證明,若無,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有六支足球隊(duì)參加單循環(huán)比賽(即任意兩支球隊(duì)只踢一場比賽),第一周的比賽中,各踢了場, 各踢了場, 踢了場,且隊(duì)與隊(duì)未踢過, 隊(duì)與隊(duì)也未踢過,則在第一周的比賽中, 隊(duì)踢的比賽的場數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中:
①“若,則”的否命題是“若,則”;
②“”是“”的必要非充分條件;
③“”是“或”的充分非必要條件;
④“”是“且”的充要條件.
其中正確的序號為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高中年級開設(shè)了豐富多彩的校本課程,甲、乙兩班各隨機(jī)抽取了5名學(xué)生的學(xué)分,用莖葉圖表示.,分別表示甲、乙兩班各自5名學(xué)生學(xué)分的標(biāo)準(zhǔn)差,則_______.(填“”“<”或“=”)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)若曲線在處的切線方程為,求實(shí)數(shù)的值;
(2)設(shè),若對任意兩個不等的正數(shù),都有恒成立,求實(shí)數(shù)的取值范圍;
(3)若在上存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機(jī)摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎.
(1)求顧客抽獎1次能獲獎的概率;
(2)若某顧客有3次抽獎機(jī)會,記該顧客在3次抽獎中獲一等獎的次數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某校高三年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表如下,頻率分布直方圖如圖:
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合計(jì) | M | 1 |
(1)求出表中M,p及圖中a的值;
(2)若該校高三學(xué)生有240人,試估計(jì)該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至多一人參加社區(qū)服務(wù)次數(shù)在區(qū)間[25,30)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(限定).
(1)寫出曲線的極坐標(biāo)方程,并求與交點(diǎn)的極坐標(biāo);
(2)射線與曲線與分別交于點(diǎn)(異于原點(diǎn)),求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com