已知橢圓E:=1(a>b>0)上任意一點(diǎn)到兩焦點(diǎn)距離之和為,離心率為,左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P是右準(zhǔn)線上任意一點(diǎn),過F2作直線PF2的垂線F2Q交橢圓于Q點(diǎn).
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)證明:直線PQ與直線OQ的斜率之積是定值;
(3)證明:直線PQ與橢圓E只有一個公共點(diǎn).
【答案】分析:(1)由題意可得,解出即可;
(2)由(1)可知:橢圓的右準(zhǔn)線方程為,設(shè)P(3,y),Q(x1,y1),由PF2⊥F2Q,可得,利用斜率計算公式可得kPQ•kOQ代入化簡得直線PQ與直線OQ的斜率之積是定值.
(3)由(2)知,直線PQ的方程為,即,與橢圓的方程聯(lián)立,消去一個未知數(shù)得到關(guān)于x的一元二次方程,只要證明△=0即可.
解答:解::(1)由題意可得,解得,c=1,
所以橢圓E:
(2)由(1)可知:橢圓的右準(zhǔn)線方程為,
設(shè)P(3,y),Q(x1,y1),
因?yàn)镻F2⊥F2Q,所以,
所以-y1y=2(x1-1)
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173230907435162/SYS201311031732309074351019_DA/12.png">且代入化簡得
即直線PQ與直線OQ的斜率之積是定值
(3)由(2)知,,

∴直線PQ的方程為,即
聯(lián)立,

∴化簡得:,又△=0,
解得x=x1,所以直線PQ與橢圓C相切,只有一個交點(diǎn).
點(diǎn)評:本題綜合考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問題轉(zhuǎn)化為方程聯(lián)立得到根與系數(shù)的關(guān)系、斜率計算公式等基礎(chǔ)知識與基本技能,考查了分析問題和解決問題的能力、推理能力和計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆黑龍江省高二上學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分) 已知橢圓E:=1(a>b>o)的離心率e=,且經(jīng)過點(diǎn)(,1),O為坐標(biāo)原點(diǎn)。

  (Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;

。á颍﹫AO是以橢圓E的長軸為直徑的圓,M是直線x=-4在x軸上方的一點(diǎn),過M作圓O的兩條切線,切點(diǎn)分別為P、Q,當(dāng)∠PMQ=60°時,求直線PQ的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省鎮(zhèn)平一高高三下學(xué)期第三次周考文科數(shù)學(xué)試卷 題型:解答題

已知橢圓E=1(ab>o)的離心率e=,且經(jīng)過點(diǎn)(,1),O為坐標(biāo)原點(diǎn)。

  (Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;

 (Ⅱ)圓O是以橢圓E的長軸為直徑的圓,M是直線x=-4在x軸上方的一點(diǎn),過M作圓O的兩條切線,切點(diǎn)分別為P、Q,當(dāng)∠PMQ=60°時,求直線PQ的方程.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年寧夏高三第六次月考文科數(shù)學(xué)試卷 題型:解答題

已知橢圓E=1(ab>o)的離心率e=,且經(jīng)過點(diǎn)(,1),O為坐標(biāo)原點(diǎn)。

  (Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;

。á颍﹫AO是以橢圓E的長軸為直徑的圓,M是直線

x=-4在x軸上方的一點(diǎn),過M作圓O的兩條切線,

切點(diǎn)分別為PQ,當(dāng)∠PMQ=60°時,求直線PQ的方程.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:寧夏銀川一中2011-2012學(xué)年高三第六次月考試題(數(shù)學(xué)文) 題型:解答題

 

已知橢圓E=1(ab>o)的離心率e=,且經(jīng)過點(diǎn)(,1),O為坐標(biāo)原點(diǎn)。

  (Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;

。á颍﹫AO是以橢圓E的長軸為直徑的圓,M是直線

x=-4在x軸上方的一點(diǎn),過M作圓O的兩條切線,

切點(diǎn)分別為PQ,當(dāng)∠PMQ=60°時,求直線PQ的方程.

 

 

 

查看答案和解析>>

同步練習(xí)冊答案