(2012•虹口區(qū)三模)設連續(xù)擲兩次骰子得到的點數(shù)分別為m,n(m,n=1,2,…,6),則直線y=
m
n
x
與圓(x-3)2+y2=1相交的概率是
5
36
5
36
分析:先研究出直線與圓相交的條件,再依據(jù)條件找出符合條件的點數(shù)m,n的組數(shù),以及直線的總個數(shù).
解答:解:直線y=
m
n
x
 與圓(x-3)2+y2=1相交時,直線的斜率小于 
2
4
,
考慮到m、n為正整數(shù),應使直線的斜率小于或等于
1
3
,
當m=1時,n=3,4,5,6,
當m=2時,n=6,共有5種情況,其概率為
5
36

故答案為
5
36
點評:題考查直線與圓的位置關系,本題是創(chuàng)新型題由骰子為背景,結(jié)合概率,考法新穎,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•虹口區(qū)三模)如圖所示,在棱長為2的正方體ABCD-A1B1C1D1中,E、F分別為DD1、DB的中點.
(Ⅰ)求證:CF⊥B1E;
(Ⅱ)求三棱錐VB1-EFC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•虹口區(qū)三模)若a,b∈R,那么
1
a
1
b
成立的一個充分非必要條件是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•虹口區(qū)三模)數(shù)列{an}滿足:an=
(3-a)n-3(n≤7)
an-6(n>7)
且{an}是遞增數(shù)列,則實數(shù)a的范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•虹口區(qū)三模)函數(shù)y=2x和y=x3的圖象的示意圖如圖所示,設兩函數(shù)的圖象交于點A(x1,y1),B(x2,y2),且x1<x2
(1)設曲線C1,C2分別對應函數(shù)y=f(x)和y=g(x),請指出圖中曲線C1,C2對應的函數(shù)解析式.若不等式kf[g(x)]-g(x)<0對任意x∈(0,1)恒成立,求k的取值范圍;
(2)若x1∈[a,a+1],x2∈[b,b+1],且a,b∈{1,2,3,4,5,6,7,8,9,10,11,12},求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•虹口區(qū)三模)已知數(shù)列{an}滿足a1=2,an+1=2(1+
1
n
)2an

(1)令bn=
an
n2
,求數(shù)列{bn}和{an}的通項公式;
(2)設cn=(An2+Bn+C)•2n,試推斷是否存在常數(shù)A,B,C,使對一切n∈N*都有an=cn+1-cn成立?若存在,求出A,B,C的值;若不存在,說明理由;
(3)對(2)中數(shù)列{cn},設dn=
an
cn
,求{dn}的最小項的值.

查看答案和解析>>

同步練習冊答案