【題目】如表中的數(shù)陣為“森德拉姆篩”,其特點(diǎn)是每行每列都成等差數(shù)列,記第i行第j列的數(shù)為aij , 則數(shù)字109在表中出現(xiàn)的次數(shù)為 .
2 | 3 | 4 | 5 | 6 | 7 | … |
3 | 5 | 7 | 9 | 11 | 13 | … |
4 | 7 | 10 | 13 | 16 | 19 | … |
5 | 9 | 13 | 17 | 21 | 25 | … |
6 | 11 | 16 | 21 | 26 | 31 | … |
7 | 13 | 19 | 25 | 31 | 37 | … |
… | … | … | … | … | … | … |
【答案】12
【解析】解:第i行第j列的數(shù)記為aij . 那么每一組i與j的組合就是表中一個(gè)數(shù).
因?yàn)榈谝恍袛?shù)組成的數(shù)列a1j(j=1,2,…)是以2為首項(xiàng),公差為1的等差數(shù)列,
所以a1j=2+(j﹣1)×1=j+1,
所以第j列數(shù)組成的數(shù)列aij(i=1,2,…)是以j+1為首項(xiàng),公差為j的等差數(shù)列,
所以aij=(j+1)+(i﹣1)×j=ij+1.
令aij=ij+1=109,
∴ij=108=1×108=2×54=3×36=4×27=6×18=12×9=9×12=18×6=27×4=36×3=54×2=108×1,
所以,表中109共出現(xiàn)12次.
所以答案是:12
【考點(diǎn)精析】通過靈活運(yùn)用數(shù)列的通項(xiàng)公式,掌握如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯(cuò)誤的是( )
A.已知兩個(gè)平面α,β,若兩條異面直線m,n滿足mα,nβ且m∥β,n∥α,則α∥β
B.已知a∈R,則“a<1”是“|x﹣2|+|x|>a”恒成立的必要不充分條件
C.設(shè)p,q是兩個(gè)命題,若¬(p∧q)是假命題,則p,q均為真命題
D.命題p:“x∈R,使得x2+x+1<0”,則¬p:“x∈R,均有x2+x+1≥0”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題的說法錯(cuò)誤的是( )
A.若復(fù)合命題p∧q為假命題,則p,q都是假命題
B.“x=1”是“x2﹣3x+2=0”的充分不必要條件
C.對(duì)于命題p:x∈R,x2+x+1>0 則¬p:x∈R,x2+x+1≤0
D.命題“若x2﹣3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2﹣3x+2≠0”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)、g(x)分別是定義在實(shí)數(shù)集上的奇函數(shù)、偶函數(shù),且f(x)+g(x)=x2+ax+2a﹣1(a為常數(shù)),若f(1)=2,則g(t)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一個(gè)k進(jìn)制數(shù)132與十進(jìn)制數(shù)42相等,那么k等于( )
A.8或5
B.6
C.5
D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O:x2+y2=1及以下3個(gè)函數(shù):①f(x)=xcosx;②f(x)=tanx;③f(x)=xsinx.其中圖象能等分圓O面積的函數(shù)有( )
A.3個(gè)
B.2個(gè)
C.1個(gè)
D.0個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】l1 , l2 , l3是空間三條不同的直線,則下列命題正確的是( )
A.l1⊥l2 , l2⊥l3l1∥l3
B.l1⊥l2 , l2∥l3l1⊥l3
C.l1∥l2∥l3l1 , l2 , l3共面
D.l1 , l2 , l3共點(diǎn)l1 , l2 , l3共面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2(a﹣1)x+2在[4,+∞)上是增函數(shù),則實(shí)數(shù)a的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x3+3x2+6x+14且f(a)=1,f(b)=19.則a+b=( )
A.2
B.1
C.0
D.﹣2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com