已知圓C:x2+y2-8x=0與直線l:y=-x+m,
(1)m=1時(shí),判斷直線l與圓C的位置關(guān)系;
(2)若直線l與圓C相切,求實(shí)數(shù)m的值.
分析:(1)把圓的方程化為標(biāo)準(zhǔn)方程,找出圓心C的坐標(biāo)和半徑r,當(dāng)m=1時(shí),利用點(diǎn)到直線的距離公式求出圓心C到直線l的距離d,判定d與r的大小即可確定出直線l與圓C的位置關(guān)系;
(2)聯(lián)立直線l與圓的方程,消去y后得到關(guān)于x的一元二次方程,由直線與圓相切時(shí)只有一個(gè)公共點(diǎn),得到跟的判別式等于0,列出關(guān)于m的方程,求出方程的解即可得到m的值.
解答:解:(1)由x2+y2-8x=0得(x-4)2+y2=42
所以圓心C(4,0),半徑r=4(2分)
m=1時(shí)圓心C到直線l的距離為d=
|4+0-1|
12+12
=
3
2
2
(4分)
因?yàn)閐<r(5分)
所以直線l:y=-x+1與圓C相交于兩點(diǎn)(6分)
(2)聯(lián)立方程組
y=-x+m
x2+y2-8x=0
,
消去y,化簡(jiǎn)得2x2-(2m+8)x+m2=0(8分)
要使直線l與圓C相切,則有△=(2m+8)2-8m2=0(10分)
即m2-8m-16=0,解得:m=4±4
2
(12分)
點(diǎn)評(píng):此題考查了直線與圓的位置關(guān)系,要求學(xué)生掌握點(diǎn)到直線的距離公式.圓心到直線的距離為d,圓的半徑為r,當(dāng)d>r時(shí),直線與圓的位置關(guān)系為相離;當(dāng)d=r時(shí),直線與圓相切;當(dāng)d<r時(shí),直線與圓相交.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2+y2-6x-4y+8=0.以圓C與坐標(biāo)軸的交點(diǎn)分別作為雙曲線的一個(gè)焦點(diǎn)和頂點(diǎn),則適合上述條件雙曲線的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)一個(gè)圓與x軸相切,圓心在直線3x-y=0上,且被直線x-y=0所截得的弦長(zhǎng)為2
7
,求此圓方程.
(2)已知圓C:x2+y2=9,直線l:x-2y=0,求與圓C相切,且與直線l垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•普陀區(qū)一模)如圖,已知圓C:x2+y2=r2與x軸負(fù)半軸的交點(diǎn)為A.由點(diǎn)A出發(fā)的射線l的斜率為k,且k為有理數(shù).射線l與圓C相交于另一點(diǎn)B.
(1)當(dāng)r=1時(shí),試用k表示點(diǎn)B的坐標(biāo);
(2)當(dāng)r=1時(shí),試證明:點(diǎn)B一定是單位圓C上的有理點(diǎn);(說(shuō)明:坐標(biāo)平面上,橫、縱坐標(biāo)都為有理數(shù)的點(diǎn)為有理點(diǎn).我們知道,一個(gè)有理數(shù)可以表示為
qp
,其中p、q均為整數(shù)且p、q互質(zhì))
(3)定義:實(shí)半軸長(zhǎng)a、虛半軸長(zhǎng)b和半焦距c都是正整數(shù)的雙曲線為“整勾股雙曲線”.
當(dāng)0<k<1時(shí),是否能構(gòu)造“整勾股雙曲線”,它的實(shí)半軸長(zhǎng)、虛半軸長(zhǎng)和半焦距的長(zhǎng)恰可由點(diǎn)B的橫坐標(biāo)、縱坐標(biāo)和半徑r的數(shù)值構(gòu)成?若能,請(qǐng)嘗試探索其構(gòu)造方法;若不能,試簡(jiǎn)述你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•瀘州一模)已知圓C:x2+y2=r2(r>0)與拋物線y2=40x的準(zhǔn)線相切,若直線l:
x
a
y
b
=1
與圓C有公共點(diǎn),且公共點(diǎn)都為整點(diǎn)(整點(diǎn)是指橫坐標(biāo).縱坐標(biāo)都是整數(shù)的點(diǎn)),那么直線l共有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2+y2=4與直線L:x+y+a=0相切,則a=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案