【題目】設(shè)函數(shù)f(x)=asin(2x+ )+b
(1)若a>0,求f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0, ]時(shí),f(x)的值域?yàn)閇1,3],求a,b的值.

【答案】
(1)解:∵a>0,由2kπ﹣ ≤2x+ ≤2kπ+ 可得kπ﹣ ≤x≤kπ+ ,

∴f(x)的單調(diào)遞增區(qū)間為[kπ﹣ ,kπ+ ](k∈Z)


(2)解:當(dāng)x∈[0, ]時(shí), ≤2x+

≤sin(2x+ )≤1,

∵f(x)的值域?yàn)閇1,3],

,或 ,

分別可解得


【解析】(1)由復(fù)合函數(shù)的單調(diào)性,解不等式2kπ﹣ ≤2x+ ≤2kπ+ 可得答案;(2)由x∈[0, ],可得 ≤sin(2x+ )≤1,結(jié)合題意可得 ,解方程組可得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P(0,﹣1)是橢圓C1 =1(a>b>0)的一個(gè)頂點(diǎn),C1的長(zhǎng)軸是圓C2:x2+y2=4的直徑,l1 , l2是過(guò)點(diǎn)P且互相垂直的兩條直線,其中l(wèi)1交圓C2于A,B兩點(diǎn),l2交橢圓C1于另一點(diǎn)D.

(1)求橢圓C1的方程;
(2)求△ABD面積的最大值時(shí)直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等比數(shù)列{an}滿足2a1+a3=3a2 , 且a3+2是a2 , a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=an+log2 ,Sn=b1+b2+…bn , 求使 Sn﹣2n+1+47<0 成立的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面程序框圖的算法思路源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”,執(zhí)行該程序框圖,若輸入的分別為14,18,則輸出的為( )

A. 0 B. 2 C. 4 D. 14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(1)當(dāng)時(shí),求函數(shù) 的極小值;

(2)若函數(shù)上為增函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校在2013年的自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),按成績(jī)分組:第1組[160,165),第2組[165,170),第3組[170,175),第4組[175,180),第5組[180,85],得到的頻率分布直方圖如圖所示.
(1)求第3,4,5組的頻率;
(2)為了能選拔出最優(yōu)秀的學(xué)生,該校決定在筆試成績(jī)高的第3,4,5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)入第二輪面試,求第3,4,5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《萊因德紙草書(shū)》(Rhind Papyrus)是世界上最古老的數(shù)學(xué)著作之一,書(shū)中有這樣一道題:把120個(gè)面包分成5份,使每份的面包數(shù)成等差數(shù)列,且較多的三份之和恰好是較少的兩份之和的7倍,則最少的那份有( )個(gè)面包.
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一汽車廠生產(chǎn)A、B、C三類轎車,每類轎車均有舒適型和標(biāo)準(zhǔn)型兩種型號(hào),某月的產(chǎn)量如表(單位:輛):

轎車A

轎車B

轎車C

舒適型

100

150

z

標(biāo)準(zhǔn)型

300

450

600

按類型分層抽樣的方法在這個(gè)月生產(chǎn)的轎車中抽取50輛,其中有A類轎車10輛.
(1)求z的值;
(2)用分層抽樣的方法在C類轎車中抽取一個(gè)容量為5的樣本.將該樣本看成一個(gè)總體,從中任取2輛,求至少有1輛舒適型轎車的概率;
(3)用隨機(jī)抽樣的方法從B類舒適型轎車中抽取8輛,經(jīng)檢測(cè)它們的得分如下:4、8.6、9.2、9.6、8.7、9.3、9.0、8.2,把這8輛轎車的得分看作一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與樣本平均數(shù)之差的絕對(duì)值不超過(guò)0.5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義滿足不等式|x﹣A|<B(A∈R,B>0)的實(shí)數(shù)x的集合叫做A的B 鄰域.若a+b﹣t(t為正常數(shù))的a+b鄰域是一個(gè)關(guān)于原點(diǎn)對(duì)稱的區(qū)間,則a2+b2的最小值為

查看答案和解析>>

同步練習(xí)冊(cè)答案