設(shè)橢圓
y2
a2
+
x2
b2
=1(a>b>0)兩頂點(diǎn)A(-b,0),B(b,0),短軸長(zhǎng)為4,焦距為2,過(guò)點(diǎn)P(4,0)的直線l與橢圓交于C,D兩點(diǎn).
(1)求橢圓的方程;
(2)求線段C,D中點(diǎn)Q的軌跡方程;
(3)若直線AC的斜率為1,在橢圓上求一點(diǎn)M,使三角形△MAC面積最大.
考點(diǎn):軌跡方程,橢圓的標(biāo)準(zhǔn)方程,直線與圓錐曲線的關(guān)系
專(zhuān)題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)利用短軸長(zhǎng)為4,焦距為2,求出幾何量,即可求橢圓的方程;
(2)利用點(diǎn)差法,可求線段C,D中點(diǎn)Q的軌跡方程;
(3)設(shè)平行于AC的直線方程為y=x+m,代入橢圓方程,利用△=0,求出m,即可在橢圓上求一點(diǎn)M,使三角形△MAC面積最大.
解答: 解:(1)∵短軸長(zhǎng)為4,焦距為2,
∴b=2,c=1,
∴a=
b2+c2
=
5
,
∴橢圓方程為
y2
5
+
x2
4
=1
.…(3分)
(2)設(shè)C(x1,y1),D(x2,y2),Q(x,y),則
y12
5
+
x12
4
=1
①,
y22
5
+
x22
4
=1

∵過(guò)點(diǎn)P(4,0)的直線l與橢圓交于C,D兩點(diǎn),線段C,D中點(diǎn)Q
∴①-②可得
y
x-4
y
x
=-
5
4
,即5x2-20x+4y2=0(0≤x≤1).…(8分)
(3)設(shè)平行于AC的直線方程為y=x+m,代入橢圓方程得9x2+8mx+4m2-20=0.
△=64m2-4•9•(4m2-20)=0,解得m=-3,m=3(舍).
把m=-3代入上式解得x=
4
3
,從而解得M(
4
3
,-
5
3
).…(11分)
把y=x+2代入橢圓方程整理得9x2+16x-4=0,
∴|AC|=
2
(-
16
9
)2+
16
9
=
20
2
9
,AC邊上高的最大值h=
5
2
,
∴△MAC面積最大值為
1
2
20
2
9
5
2
=
50
9
.…(14分)
點(diǎn)評(píng):本題考查橢圓的方程,考查點(diǎn)差法的運(yùn)用,考查三角形面積的計(jì)算,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三棱錐的三視圖如圖所示,則它的體積為( 。
A、
3
6
B、
3
3
C、
3
2
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=sinx(x∈[0,π]),在區(qū)間[0,π]上任取一點(diǎn)x0,則f(x0)≥
1
2
的概率為( 。
A、
2
3
B、
1
2
C、
π
3
D、
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,若輸入n=10,則輸出的S=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F(1,0)橢圓C1的右焦點(diǎn)且F為雙曲線C2的右頂點(diǎn),橢圓C1與雙曲線C2的一個(gè)交點(diǎn)是M(
2
3
3
3
3
).
(Ⅰ)求橢圓C1及雙曲線C2的方程;
(Ⅱ)若點(diǎn)P是雙曲線右支上的動(dòng)點(diǎn),直線PF交y軸于點(diǎn)Q,試問(wèn)以線段PQ為直徑的圓是否恒過(guò)定點(diǎn)?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l過(guò)點(diǎn)N(4,0),傾斜角為α.
(1)寫(xiě)出直線l的參數(shù)方程,及當(dāng)α=
π
2
時(shí),直線l的極坐標(biāo)方程l′.
(2)已知從極點(diǎn)O作直線m與直線l′相交于點(diǎn)M,在OM上取一點(diǎn)P,使|OM|•|OP|=4,求點(diǎn)P的極坐標(biāo)方程,并說(shuō)明P的軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知F1,F(xiàn)2分別是雙曲線G:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn),雙曲線G與拋物線y2=-4x有一個(gè)公共的焦點(diǎn),且過(guò)點(diǎn)(-
6
2
,1)
(Ⅰ)求雙曲線G的方程;
(Ⅱ)設(shè)直線l與雙曲線G相切于第一象限上的一點(diǎn)P,連接PF1,PF2,設(shè)l的斜率為k,直線PF1,PF2的斜率分別為k1,k2,試證明
1
kk1
+
1
kk2
為定值,并求出這個(gè)定值;
(Ⅲ)在第(Ⅱ)問(wèn)的條件下,作F2Q⊥F2P,設(shè)F2Q交l于點(diǎn)Q,證明:當(dāng)點(diǎn)P在雙曲線右支上移動(dòng)時(shí),點(diǎn)Q在一條定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sinωx•cosωx-cos2ωx(ω>0)最小正周期為
π
2

(Ⅰ)求ω的值及函數(shù)f(x)的解析式;
(Ⅱ)若△ABC的三條邊a,b,c滿(mǎn)足a2=bc,a邊所對(duì)的角為A,求A的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)P為圓O的弦AB上的任意點(diǎn),連結(jié)PO,使∠OPC=90°,PC交圓于C,若AP=4,PC=3,則PB=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案