過定點(diǎn)(1,0)一定可以作兩條直線與圓相切,則的取值范圍為 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)是平面內(nèi)的兩條不同直線,,是平面內(nèi)的兩條相交直線,有下列四個命題①∥且∥ ②∥且∥
③∥且n∥ ④∥且∥.
其中是∥成立的充分而不必要條件的命題的序號是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,三棱柱中,側(cè)棱垂直底面,
,,是棱的中點(diǎn)
(1)證明:平面平面;
(2)平面分此棱柱為兩部分,求這兩部分體積的比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系中,圓C的方程為.若直線上存在點(diǎn),使過所作的圓的兩條切線相互垂直,則實(shí)數(shù)的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
定義在R上的增函數(shù)y=f(x)對任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求f(0);
(2)求證:f(x)為奇函數(shù);
(3)若f(k·3x)+f(3x-9x-2)<0對任意x∈R恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com