已知定點(diǎn)F1(-
3
,0),F2(
3
,0)
,曲線(xiàn)C是使|RF1|+|RF2|為定值的點(diǎn)R的軌跡,曲線(xiàn)C過(guò)點(diǎn)T(0,1).
(1)求曲線(xiàn)C的方程;
(2)直線(xiàn)l過(guò)點(diǎn)F2,且與曲線(xiàn)C交于PQ,當(dāng)△F1PQ的面積取得最大值時(shí),求直線(xiàn)l的方程;
(3)設(shè)點(diǎn)P是曲線(xiàn)C上除長(zhǎng)軸端點(diǎn)外的任一點(diǎn),連接PF1、PF2,設(shè)∠F1PF2的角平分線(xiàn)PM交曲線(xiàn)C的長(zhǎng)軸于點(diǎn)M(m,0),求m的取值范圍.
考點(diǎn):直線(xiàn)與圓錐曲線(xiàn)的綜合問(wèn)題
專(zhuān)題:圓錐曲線(xiàn)中的最值與范圍問(wèn)題
分析:(1)由已知條件推導(dǎo)出|RF1|+|RF2|=|TF1|+|TF2|≥2
3
,由此能求出曲線(xiàn)C的方程.
(2)設(shè)直線(xiàn)l為x=my+
3
,代入橢圓方程
x2
4
+y2=1
,得(4+m2)y2+2
3
my-1=0
,由此利用韋達(dá)定理、點(diǎn)到直線(xiàn)距離公式,結(jié)合已知條件能求出直線(xiàn)l的方程.
(3)由題意知
PF1
PM
|
PF1
||
PM
|
=
PF2
PM
|
PF2
||
PM
|
,
PF1
PM
|
PF1
|
=
PF2
PM
|
PF2
|
,由此能求出m的取值范圍.
解答: 解:(1)∵定點(diǎn)F1(-
3
,0),F2(
3
,0)
,
曲線(xiàn)C是使|RF1|+|RF2|為定值的點(diǎn)R的軌跡,
曲線(xiàn)C過(guò)點(diǎn)T(0,1).
∴|RF1|+|RF2|=|TF1|+|TF2|
=2
(
3
)2+1
=4>|F1F2|=2
3
,(2分)
∴曲線(xiàn)C為以原點(diǎn)為中心,F(xiàn)1,F(xiàn)2為焦點(diǎn)的橢圓,
設(shè)其長(zhǎng)半軸為a,短半軸為b,半焦距為c,
則2c=2
3
,∴a=2,c=
3
,b=1

∴曲線(xiàn)C的方程為
x2
4
+y2=1
.(4分)
(2)設(shè)直線(xiàn)l為x=my+
3
,代入橢圓方程
x2
4
+y2=1
,
(4+m2)y2+2
3
my-1=0
,
△=12m2+16(m+m2)>0,
設(shè)P(x3,y3),得
y3+y4=-
2
3
m
4+m2
y3y4=-
1
4+m2
,
∴|PQ|=
(x3-x4)2+(y3-y4)

=
(1+m)2[(y3+y4)2-4y3y4]
=
4(1+m2)
4+m2

F1到直線(xiàn)l的距離d=
2
3
1+m2

設(shè)t=
1+m2
,則t≥1,
∴S△F1PQ=
1
2
|PQ|d=4
3
×
1+m2
4+m2
=
4
3
t
t2+3
=
4
3
t+
3
t
≤2.
當(dāng)t2=3,即m2=2,m=±2時(shí),面積最大,
∴△F1PQ的面積取得最大值時(shí),
直線(xiàn)l的方程為:x+
2
y-
3
=0
和x-
2
y-
3
=0.(9分)
(3)由題意可知:
PF1
PM
|
PF1
||
PM
|
=
PF2
PM
|
PF2
||
PM
|
,
PF1
PM
|
PF1
|
=
PF2
PM
|
PF2
|
,(10分)
設(shè)P(x0,y0)其中x02≠4,
將向量坐標(biāo)代入并化簡(jiǎn),得:
m(4x02-16)=3x02-12x0,(12分)
x02≠4,∴m=
3
4
x0
,(13分)
∵x0∈(-2,2),∴m∈(-
3
2
,
3
2
).(14分)
點(diǎn)評(píng):本題考查曲線(xiàn)方程的求法,考查三角形面積最大時(shí)直線(xiàn)方程的求法,考查實(shí)數(shù)的取值范圍的求法,解題時(shí)要認(rèn)真審題,注意點(diǎn)到直線(xiàn)的距離公式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=lg
1+sinx
cosx
的圖象( 。
A、關(guān)于x軸對(duì)稱(chēng)
B、關(guān)于y軸對(duì)稱(chēng)
C、關(guān)于原點(diǎn)對(duì)稱(chēng)
D、關(guān)于直線(xiàn)y=x對(duì)稱(chēng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線(xiàn)與橢圓
x2
9
+
y2
25
=1有公共焦點(diǎn)F1,F(xiàn)2,它們的離心率之和為2
4
5

(1)求雙曲線(xiàn)的標(biāo)準(zhǔn)方程;
(2)設(shè)P是雙曲線(xiàn)與橢圓的一個(gè)交點(diǎn),求cos∠F1PF2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(x0,y0)是橢圓
x2
8
+
y2
4
=1上一點(diǎn),A點(diǎn)的坐標(biāo)為(6,0),求線(xiàn)段PA中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
OA
=(3,-4),
OB
=(6,-3),
OC
=(5-m,-3-m).
(1)若點(diǎn)A,B,C不能構(gòu)成三角形,求實(shí)數(shù)m滿(mǎn)足的條件;
(2)若△ABC為直角三角形,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的圖象的一部分如圖,已知函數(shù)與x軸交于點(diǎn)P(-2,0)和(6,0),點(diǎn)M,N分別是最高點(diǎn)和最低點(diǎn),且∠MPN=
π
2

(Ⅰ)求函數(shù)f(x)表達(dá)式;
(Ⅱ)若f(x0+
10
3
)=
3
,求sin(
π
4
x0-
π
6
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2013年某市某區(qū)高考文科數(shù)學(xué)成績(jī)抽樣統(tǒng)計(jì)如下表:
分組頻數(shù)頻率頻率/組距
[0,30)60.0060.0002
[30,60)820.0820.0027
[60,90)2560.2560.0085
[90,120)mn0.0145
[120,150]220N0.0073
合計(jì)M1
(Ⅰ)求出表中m、n、M、N的值,并根據(jù)表中所給數(shù)據(jù)在如圖坐標(biāo)系中畫(huà)出頻率分布直方圖;(縱坐標(biāo)保留了小數(shù)點(diǎn)后四位小數(shù))
(Ⅱ)若2013年北京市高考文科考生共有20000人,試估計(jì)全市文科數(shù)學(xué)成績(jī)?cè)?0分及90分以上的人數(shù);
(Ⅲ)香港某大學(xué)對(duì)內(nèi)地進(jìn)行自主招生,在參加面試的學(xué)生中,有7名學(xué)生數(shù)學(xué)成績(jī)?cè)?40分以上,其中男生有4名,要從7名學(xué)生中錄取2名學(xué)生,求其中恰有1名女生被錄取的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若過(guò)橢圓
x2
12
+
y2
3
=1內(nèi)一點(diǎn)(2,1)的弦被該點(diǎn)平分,求該弦所在直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+x(a∈R)
(1)當(dāng)0<a<
1
2
時(shí),f(sinx)(x∈R)的最大值為
5
4
,求f(x)的最小值;
(2)對(duì)于任意的x∈R,總有f(sinxcosx)≤1,試求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案