過橢圓數(shù)學公式(a>b>0)的左頂點A作斜率為1的直線l與橢圓的另一個交點為M,與y軸的交點為B,若AM=MB,則該橢圓的離心率為________.


分析:易知左頂點A的坐標為(-a,0),從而設直線l的方程為:y=x+a,與y軸相交得到B(0.a(chǎn)),再由AM=MB知M為線段AB的中點得M(),最后由M在橢圓上求得a,c關系得到離心率.
解答:根據(jù)題意:左頂點A(-a,0),直線l的方程為:y=x+a
∴B(0.a(chǎn)),
又∵AM=MB
∴M(
又∵M在橢圓上

整理得:a2=3b2=3(a2-c2
∴2a2=3c2

故答案為:
點評:本題主要考查橢圓的頂點,離心率以及a,b,c間的轉(zhuǎn)化關系,同時還考查線與線的關系,點與橢圓的位置關系.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

過橢圓=1(a>b>0)的左焦點F任作一條與兩坐標軸都不垂直的弦AB,若點M在x軸上,且使得MF為△AMB的一條內(nèi)角平分線,則稱點M為該橢圓的“左特征點”,那么“左特征點”M一定是(    )

A.橢圓左準線與x軸的交點                     B.坐標原點

C.橢圓右準線與x軸的交點                     D.右焦點

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年人教版高考數(shù)學文科二輪專題復習提分訓練24練習卷(解析版) 題型:選擇題

過橢圓+=1(a>b>0)的焦點垂直于x軸的弦長為,則雙曲線-=1的離心率e的值是(  )

(A) (B)

(C) (D)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆甘肅武威六中高二12月學段檢測文科數(shù)學試題(解析版) 題型:選擇題

已知AB是過橢圓(a>b>0)的左焦點F1的弦,則⊿ABF2的周長是(     )

A.a(chǎn)         B.2a           C.3ª          D.4a

 

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年安徽省皖中地區(qū)示范高中高三聯(lián)考數(shù)學試卷(文科)(解析版) 題型:選擇題

若過橢圓(a>b>0)的焦點且垂直于x軸的直線被橢圓截得的線段長為,則該橢圓的離心率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年北京市一模試卷及高頻考點透析:推理與證明 幾何證明選講(解析版) 題型:解答題

已知橢圓C:,(a>b>0)的兩焦點分別為F1、F2,,離心率.過直線l:上任意一點M,引橢圓C的兩條切線,切點為A、B.
(1)在圓中有如下結(jié)論:“過圓x2+y2=r2上一點P(x,y)處的切線方程為:xx+yy=r2”.由上述結(jié)論類比得到:“過橢圓(a>b>0),上一點P(x,y)處的切線方程”(只寫類比結(jié)論,不必證明).
(2)利用(1)中的結(jié)論證明直線AB恒過定點();
(3)當點M的縱坐標為1時,求△ABM的面積.

查看答案和解析>>

同步練習冊答案