精英家教網(wǎng)已知△ABC的頂點A(5,1),AB邊上的中線CM所在直線方程為2x-y-5=0.AC邊上的高BH所在直線為x-2y-5=0.求:
(1)頂點C的坐標;
(2)直線BC的方程.
分析:(1)先求直線AC的方程,然后求出C的坐標.
(2)設出B的坐標,求出M代入直線方程為2x-y-5=0,與直線為x-2y-5=0.聯(lián)立求出B的坐標然后可得直線BC的方程.
解答:精英家教網(wǎng)解:直線AC的方程為:
y-1=-2(x-5),
即2x+y-11=0,
解方程組
2x+y-11=0
2x-y-5=0
x=4
y=3
則C點坐標為(4,3).
設B(m,n),
則M(
m+5
2
,
n+1
2
),
2
m+5
2
-
n+1
2
-5=0
m-2n-5=0
,
整理得
2m-n-1=0
m-2n-5=0
,
解得
m=-1
n=-3
則B點坐標為(-1,-3),
y-3=
6
5
(x-4),
即6x-5y-9=0.
點評:本題考查兩條直線的交點,待定系數(shù)法求直線方程,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知△ABC的頂點A(2,8),B(-4,0),C(6,0),
(1)求直線AB的斜率; 
(2)求BC邊上的中線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的頂點A,B的坐標分別為(-4,0),(4,0),C 為動點,且滿足|AC|+|BC|=
54
|AB|
,求點C的軌跡方程,并說明它是什么曲線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的頂點A(1,3),AB邊上的中線CM所在直線方程為2x-3y+2=0,AC邊上的高BH所在直線方程為2x+3y-9=0.求:
(1)頂點C的坐標;
(2)直線BC的方程.

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�