已知橢圓C1(ab>0)的一條準(zhǔn)線方程是x = ,其左、右頂點(diǎn)分別是A、B雙曲線C2=1的一條漸近線方程為3x 5y = 0 .

(1)求橢圓C1的方程及雙曲線C2的離心率;

(2)在第二象限內(nèi)取雙曲線C2上一點(diǎn), 連結(jié)BP交橢圓C1于點(diǎn)M,連結(jié)PA并延長交橢圓C1于點(diǎn)N,若。求證:= 0 。

解:(1)由已知    , 解之得  

∴橢圓的方程為=1,雙曲線的方程=1。又c′=

∴雙曲線的離心率e2 =

(2)由(1)A(5,0),B(5,0)

設(shè)M ( x0 ,y0 ) , 則由,得MBP的中點(diǎn)

P點(diǎn)坐標(biāo)這(2x0 5 , 2y0 )

M、P坐標(biāo)代入C1C2方程得:

消去y0得:25x0 25 = 0 解之得:x0 =x0 = 5(舍去)

由此可得:P ( 10 , 3 )

當(dāng)PP ( 10 , 3 )時(shí),PA的方程為y =( x + 5 )

y =( x + 5 )

代入=1,得:2x2 + 15x + 25 = 0

x =x = 5 (舍去)

xN =, ∴xN = x0 , MNx 軸,即

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練24練習(xí)卷(解析版) 題型:解答題

已知橢圓C1:+=1(a>b>0)的右頂點(diǎn)為A(1,0),C1的焦點(diǎn)且垂直長軸的弦長為1.

(1)求橢圓C1的方程;

(2)設(shè)點(diǎn)P在拋物線C2:y=x2+h(hR),C2在點(diǎn)P處的切線與C1交于點(diǎn)M,N.當(dāng)線段AP的中點(diǎn)與MN的中點(diǎn)的橫坐標(biāo)相等時(shí),h的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練24練習(xí)卷(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy,已知橢圓C1:+=1(a>b>0)的左焦點(diǎn)為F1(-1,0),且點(diǎn)P(0,1)C1.

(1)求橢圓C1的方程;

(2)設(shè)直線l同時(shí)與橢圓C1和拋物線C2:y2=4x相切,求直線l的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練24練習(xí)卷(解析版) 題型:選擇題

已知橢圓C1:+=1(a>b>0)與雙曲線C2:x2-=1有公共的焦點(diǎn),C2的一條漸近線與以C1的長軸為直徑的圓相交于A,B兩點(diǎn).C1恰好將線段AB三等分,(  )

(A)a2= (B)a2=13

(C)b2= (D)b2=2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1:=1(a>b>0)的右焦點(diǎn)為F,上頂點(diǎn)為A,P為C1上任一點(diǎn),MN是圓C2:x2+(y-3)2=1的一條直徑.若與AF平行且在y軸上的截距為3-的直線l恰好與圓C2相切.

(1)求橢圓C1的離心率;

(2)若·的最大值為49,求橢圓C1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)

   已知橢圓C1 (a>b>0)的離心率為,直線+2=0與以原點(diǎn)為圓心、以橢圓C1的短半軸長為半徑的圓相切。

  (1)求橢圓C1的方程;

  (2)設(shè)橢圓C1的左焦點(diǎn)為F 1,右焦點(diǎn)F2,直線過點(diǎn)F1且垂直于橢圓的長軸,動直線垂直直線于點(diǎn)P,線段PF2的垂直平分線交于點(diǎn)M,求點(diǎn)M的軌跡C2的方程;

  (3)若A(x1,2)、B(x2 ,Y2)、C(x0,y0)是C2上不同的點(diǎn),且AB⊥ BC,求Yo的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案