畫出下列函數(shù)的圖象,并寫出函數(shù)的值域.
(1)y=x+
|x|
x
            
(2)y=|x-2|+|x+1|
考點(diǎn):函數(shù)的值域,函數(shù)的圖象
專題:作圖題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)函數(shù)可化為y=
x+1,x>0
x-1,x<0
,(2)函數(shù)可化為y=
2x-1,x≥2
3,-1<x<2
-2x+1,x≤-1
,分別可得其圖象,可得值域.
解答: 解:(1)y=x+
|x|
x
=
x+1,x>0
x-1,x<0
,
可得圖象如圖a所示,
可得函數(shù)的值域?yàn)椋?∞,-1)∪(1,+∞);
(2)y=|x-2|+|x+1|=
2x-1,x≥2
3,-1<x<2
-2x+1,x≤-1

可得圖象如圖b所示,
可得函數(shù)的值域?yàn)閇3,+∞).
點(diǎn)評(píng):本題考查函數(shù)的值域,涉及函數(shù)的圖象的作法,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m<0,角α的終邊經(jīng)過(guò)點(diǎn)P(4m,-3m),那么2sinα+cosα的值等于( 。
A、
2
5
B、-
2
5
C、
1
5
D、-
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{Sn}的前n項(xiàng)和為Tn,且滿足Tn=
3
2
Sn-3n,n∈N*
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)記bn=
2an
(an-2)2
,n∈N*,求證:b1+b2+…+bn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義函數(shù)y=f(x),x∈D(D為定義域)圖象上的點(diǎn)到坐標(biāo)原點(diǎn)的距離為函數(shù)的y=f(x),x∈D的模.若模存在最大值,則稱之為函數(shù)y=f(x),x∈D的長(zhǎng)距;若模存在最小值,則稱之為函數(shù)y=f(x),x∈D的短距.
(1)判斷函數(shù)f1(x)=
1
x
是否存在長(zhǎng)距與短距,若存在,請(qǐng)求出;
(2)判斷函數(shù)f2(x)=
-x2-4x+5
是否存在長(zhǎng)距與短距,若存在,請(qǐng)求出;
(3)對(duì)于任意x∈[1,2]都存在實(shí)數(shù)a使得函數(shù)f(x)=
2x|x-a|
的短距不小于2,求實(shí)數(shù)a的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a∈R,函數(shù)f(x)=x|x-a|+2x.
(1)若a=2,求函數(shù)f(x)在區(qū)間[0,3]上的最大值;
(2)若a>2,寫出函數(shù)f(x)的單調(diào)區(qū)間(不必證明);
(3)若存在a∈[-2,4],使得關(guān)于x的方程f(x)=t•f(a)有三個(gè)不相等的實(shí)數(shù)解,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱可入肺顆粒物,2012年3月2日,國(guó)家環(huán)保部發(fā)布了新修訂的《環(huán)境質(zhì)量標(biāo)準(zhǔn)》,其中規(guī)定:居民區(qū)中的PM2.5年平均濃度不得超過(guò)35微克/立方米,PM2.5的24小時(shí)平均濃度不得超過(guò)75微克/立方米.某城市環(huán)保部門隨機(jī)抽取了一居民區(qū)去年40天的PM2.5的24小時(shí)平均濃度的監(jiān)測(cè)數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如下:
組別 PM2.5(微克/立方米) 頻數(shù)(天) 頻率
第一組 (0,15] 4 0.1
第二組 (15,30] 12 0.3
第三組 (30,45] 8 0.2
第四組 (45,60] 8 0.2
第五組 (60,75] 4 0.1
第六組 (75,90] 4 0.1
(Ⅰ)求該樣本的平均數(shù)的估計(jì)值,并根據(jù)樣本估計(jì)總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進(jìn),并說(shuō)明理由;
(Ⅱ)從這40天中,隨機(jī)抽取2天,記這2天中該居民區(qū)PM2.5的24小時(shí)平均濃度符合《環(huán)境空氣質(zhì)量標(biāo)》的天數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C過(guò)點(diǎn)p(0,2,)O(0,0),Q(4,0)三點(diǎn):
(Ⅰ)求圓C的方程;
(Ⅱ)過(guò)點(diǎn)A(2,2)的直線l與圓C交于M,N兩點(diǎn),且|MN|=4,求直線l方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的一元二次函數(shù)f(x)=b2x2-(a+1)x+1.
(Ⅰ)若a,b分別表示將一覆蓋質(zhì)地均勻的正方體骰子(六個(gè)面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次時(shí)第一次、第二次出現(xiàn)的點(diǎn)數(shù),求y=f(x)恰有一個(gè)零點(diǎn)的概率;
(Ⅱ)若a,b∈[1,6],求滿足y=f(x)的零點(diǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=x3-3x2+x的圖象上過(guò)原點(diǎn)的切線方程
 

查看答案和解析>>

同步練習(xí)冊(cè)答案