(2008•湖北模擬)若等比數(shù)列的各項均為正數(shù),前n項之和為S,前n項之積為P,前n項倒數(shù)之和為M,則( 。
分析:先設(shè)此等比數(shù)列的首項為a1,公比為q.分當q=1和q≠1時,用a1,q分別表示出S,P和M,進而得出P2=(
S
M
)
n
解答:解:設(shè)此等比數(shù)列的首項為a1,公比為q
若q=1,則S=na1,M=
n
a1
,P=a1n,所以P2=a12n,(
S
M
)
n
=a12n所以P2=(
S
M
)
n

若q≠1,則S=
a1(qn-1)
q-1
,M=
(1-
1
q n
 
)
a1(1-
1
q
)
=
qn-1
a1[qn-qn-1]
,P=a1nq 
n(n-1)
2

所以 (
S
M
)
n
=[a12qn-1]n=a12nq[n(n-1)]
P2=a12nq[n(n-1)]
所以  P2=(
S
M
)
n

故選C.
點評:題考查等比數(shù)列的通項公式、前n項和.及計算能力.在用a1,q表示S 是要分 當q=1和q≠1兩種情況.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2008•湖北模擬)已知f(x)=ax3+bx2+cx+d為奇函數(shù),且在點(2,f(2))處的切線方程為9x-y-16=0.
(1)求f(x)的解析式;
(2)若y=f(x)+m的圖象與x軸僅有一個公共點,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•湖北模擬)某工廠去年某產(chǎn)品的年產(chǎn)量為100萬只,每只產(chǎn)品的銷售價為10元,固定成本為8元.今年,工廠第一次投入100萬元(科技成本),并計劃以后每年比上一年多投入100萬元(科技成本),預計產(chǎn)量年遞增10萬只,第n次投入后,每只產(chǎn)品的固定成本為g(n)=
k
n+1
(k>0,k為常數(shù),n∈Z且n≥0),若產(chǎn)品銷售價保持不變,第n次投入后的年利潤為f(n)萬元.
(1)求k的值,并求出f(n)的表達式;
(2)問從今年算起第幾年利潤最高?最高利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•湖北模擬)已知向量
a
=(1,2),向量
b
=(x,-2),且
a
∥(
a
-
b
)
,則實數(shù)x等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•湖北模擬)已知向量
a
=(2cosx,tan(x+α))
,
b
=(
2
sin(x+α),tan(x-α))
,已知角α(α∈(-
π
2
π
2
))
的終邊上一點P(-t,-t)(t≠0),記f(x)=
a
b

(1)求函數(shù)f(x)的最大值,最小正周期;
(2)作出函數(shù)f(x)在區(qū)間[0,π]上的圖象.

查看答案和解析>>

同步練習冊答案